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Abstract— Fast and accurate visual search is an enabler for
many applications of drones. Prior works use POMDPs to
produce effective search strategies. As the observation models
are from heuristics, the robustness of these approaches on
the field is unclear. This work builds a testbed that combines
latest developments in related areas, including mobile CNNs
for inference on mobile platforms and policy search with point
based methods, in a POMDP framework. A dataset for a
simple but realistic application, search for a single basketball,
is collected to train the perception modules, investigate their
error characteristics and validate the control algorithm. Simu-
lation using realistic parameters from data sheds lights on the
importance of considering persistent factors in the environment
in modeling the observations from the CNN-based perception
module, which is not systematically considered previously.

I. INTRODUCTION

In recent years commercial quadcopters, or drones, have
become widely available. These flying machines perceive
the world through a unique perspective and unlike ground
vehicles, are not subject to the usual traffic patterns. This
has motivated a wide range of applications using drones.
Recently, drones have been applied to search and rescue
[1]–[4], active classifications [5], [6], aerial surveillance [7],
[8] and agriculture [9], to name few. An enabler of many
such applications is an algorithm that allows the drone to
recognize and approach a pre-defined target quickly. Similar
problems have been investigated in prior works [10]–[15].
Closest to our setting is [14], [15]. However, Sudevan et al.
[14] uses a classical perception module, which is less effec-
tive for complex applications. Gupta et al. [15] assumes a
simple observation model without validation on the physical
environment. In view of these limitations of prior works, this
paper makes the following contributions:

• A dual-mode image processing mechanism is fully
integrated into our Parrto Bebop 2 drone and the ac-
companying Samsung S8 phone. The first mode is faster
but with less accuracy, while the second mode is more
expensive but significantly more accurate. This is in line
with prior work in detection and tracking on drones [4],
[16], [17] which performs target search through image
processing. Here our contribution is to extend the prior
work to scenarios in which the search area is large,
making it necessary to collect images at different flight
locations.

• An image classifier trained on images collected from
actually operating our drone. The classifier is built
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on state-of-the-art computer vision algorithms, a Mo-
bileNet CNN [18]. From the data collected, we note that
the performance of the trained classifier is a function
of flight altitude as well as random but persistent
environmental factors that affects visibility. The former
is in line with the assumptions in prior works, but we
observe interesting differences. The latter is a novel
aspect that has not been considered before.

• A partially observable Markov decision problem for-
mulation. The proposed formulation incorporates the
acquisition process as well as the classifiers’ character-
istics. Our work is in line with a large body of research
on motion planning for drones using POMDPs [10]–
[13], [15], [19], but our focus is on data collection and
analysis that leads to a realistic model. Another novelty
is the adoption of latest computer vision algorithms.

• A thorough comparative analysis of the impacts of the
noise and the robustness to modeling artifacts. Through
elaborate simulations, we investigate the impact of the
persistent environmental factors in search using drones.

The paper is organized as follows: Section II presents
the problem formulation, highlights its difference to prior
works and introduces our testbed. Section III discusses our
simulation which shows the importance of considering the
persistent factors in the environment, such as visibility.
Section IV introduces our dataset collection process and the
perception module design. Section V concludes the paper and
discusses interesting future directions. The attached demo
video shows a successful test flight of our system.

II. TARGET SEARCH PROBLEM
We consider the problem of optimization the flight path

of a drone which is tasked with localizing a single static
target on the ground in the face of uncertainty and physical
constraints of the system. The components of our model
include
• Search Area We consider the location of a single target

of interest in a two-dimensional plane on the ground,
denoted as Itarget = [I la

min, I
la
max] × [I lo

min, I
lo
max]. The

static target is denoted as Ytarget ∈ Itarget.
• Flight Space We consider a three-dimensional region
Iflight = [I la

min, I
la
max]× [I lo

min, I
lo
max]× [Ialt

min, I
alt
max]. This

denotes the allowable space of flight for the drone. The
location of the drone at time t is denoted as Xt ∈ Iflight.

• Actions At every time step, the drone is allowed to
move to one of the immediate neighbors of its current
location, denoted as N(xt). It will also choose a sensing
mode asense,t from a finite set of sensing modes. The
sensing modes differs in their cost and reliability. The



drone can also choose to stop its operation and land at
any time.

• Observations At any given time t and flight location
Xt ∈ Iflight, the drone can acquire and process and
image to arrive at a binary observation Ot ∈ {0, 1}.
This observation is an indication of whether the target
is visible in the field-of-view (FOV) of the drone at
this time step. We denote Yt ∈ {0, 1} be the random
variable denoting the “true” inclusion indicator, which
depends on Xt and Ytarget. Ot is a noisy version of Yt.

• Observation Noise We take a probabilistic model to
describe Ot as a function of the altitude of the drone
(denoted as Ht), the visibility V that reflects environ-
mental conditions, and the true inclusion indicator Yt:

P(Ot = 1|Yt = y,Ht = h, V = v)

=


0 if h ≥ v
p0→1(h) if h < v, y = 0

1− p1→0(h) if h < v, y = 1

(1)

We emphasize that p0→1(h) and p0→1(h) is more
precisely a function of the sensing mode selected. We
omit this in the notation for simplicity.

• Prior distribution We assume the target is uniformly
distributed in Itarget. We also assign a Bayesian prior
to V , denoted as pV . In practice this prior shall be
estimated from data. For multiple sensing modes, a prior
is assigned for each independently.

• Reward The drone receives a step-wise movement cost
and sensing cost. The former is dependent on the speed
of the drone. The latter is dependent on the sensing
mode design. Both will be discussed in greater details
later. If the drone chooses to stop, it receives a positive
reward if: (a) Ht = Ialt

min (flying at minimum altitude).
(b) Yt = 1 (the current FOV includes the target).

We note that our problem formulation is similar to the one
investigated in the recent work [15]. However, our model is
significantly different in its observation model. In particular,
it has a notion of “visibility” which is not considered in
prior works. Our model says that for each flight session,
there is an intrinsic maximum visibility level of the current
conditions. If the drone is flying on or above this level,
the perception module will output a trivial “0” consistently.
This is motivated by our observations from field tests and
data collection practice (see Section IV for more details).
Our formulation models the effects of “persistent factors” in
the environment. Those factors could be lighting conditions,
background and weather. Presented with these conditions,
the perception module can lose its ability to successfully
detect the target, either due to reduced image quality or a lack
of data points in the training set that represents the current
condition. We note that the latter is particularly prevalent
in a modern, data-drive perception module, such as the
mobile CNN algorithm we adopted. While such algorithms
are much more successful in complex tasks compared to
classical algorithms, they could be more susceptible to the

kind of catastrophic failures we consider in this work due to
their internal complexity and requirement for large amount
of data. In contrast, prior work assumes the observation
noise is conditionally independent given the height and the
target location. It does not consider persistent factors in
the observation model. Their simplified model is unrealistic.
From our simulations to be discussed in Section III, ignoring
those factors could lead to sub-optimal search algorithms.

A. Visibility-Aware POMDP

Our formulation can be easily casted into a POMDP,
more precisely a mixed observability Markov decision pro-
cesses (MOMDPs) [20]. The problem is specified by a tuple
P = (S,P0, A, T,Ω, H,R, γ), denoting states, initial state
distributions, actions, transition function, set of observations,
observation function, reward function and discount factor,
respectively.
• States: The states S = (X ∪ {ξ,Ξ}) × Y × V . We

use quantization to simplify the problem domain. In
particular, X ⊆ Iflight, Y ⊆ Itarget are discrete grid
points within the flight space and the target space,
respectively. We use a Nla × Nlo × Nalt grid for X ,
and its Nla ×Nlo projection onto the ground plane for
Y . V is the space of visibility levels. Since X has Nalt
distinct altitudes, V can be described by (Nalt + 1)Nsense

intervals covering [0,∞) for each sensing mode (Nsense
denotes the number of sensing modes). ξ and Ξ is the
starting and ending states, respectively. The X ∪{ξ,Ξ}
factor is observable, while Y and V are hidden parts of
the state space.

• Initial Distributions: The observable state is initialized
at ξ, the starting state. The target Ytarget ∈ Y follows
uniform distribution, the visibility has a prior pV .

• Actions: Since X is a grid point, the neighbor N(Xt)
is the four neighbors at the same altitude and the
location directly above and below the current lo-
cation. Thus the movement action can be specified
by {left, right, forward, backward, up, down, denoted as
Afly. The drone also decides on the sensing modes
for the next location, denoted as Asense. The stopping
action is denoted as ∆. The action space is thus A =
Afly ×Asense ∪ {∆}.

• Transition Function: If s = ξ, the drone will move to
the highest location at the center of the flight space. If
a = ∆ or if afly leads to a location outside X the next
state is Ξ (the end state). The drone will stay at the end
state once entered. Otherwise the drone will move to the
location specified by afly (thus changing the observable
state). The hidden states are always static.

• Observations: The observation set Ω = {0, 1,nil}.
• Observation Function: The observation is nil if and

only if the next state is the stopping state nil . Otherwise
the observation distributes according to Eqns. 1.

• Reward Function: The reward function is introduced in
the problem formulation. We use realistic measurements
to acquire movement and sensing costs. The positive
reward for successful search is a hyperparameter.



• Discount We set the discount factor γ to 0.99.

Fig. 1: The control interface. Left: Screenshot of the Android
app. The app supports both manual control for data collection
as well as autonomous search using the POMDP policies.
Right: Control loop of the drone.

B. Control System

Approximately optimal solutions are found using the SAR-
SOP solver [21]. We use the APPL toolkit 1. Model searches
are performed in 2-hour sessions following the practice in
[15]. The solution of the POMDP problem using SARSOP
is a piece-wise linear function that approximates the value
function. This function is represented as a set of α-vectors
with the length of the hidden states. Following the MOMDP
formulation [20] each observable state sobs is associated with
a set of α-vector denoted as Γ(sobs), each in turn is associated
with a unique action a(α). Let the belief vector on the hidden
states be bt, the action is selected by

a(α) = arg max
α∈Γ(sobs)

(α · bt) (2)

Given the current state, the controller first finds the next
action using Eqns. 2. As in our model the next observable
states is a deterministic function of the current observable
state and the action, the observable state can be updated
after the action is known. The drone can then move to the
next position (or stop and land), and acquire an observation
using the selected sensing mode at the new location. The
observation is then used to update its internal belief on
the hidden states. This process repeats until a timeout is
issued by the meta-controller (to avoid excessively long
search sessions), or a stop action is chosen. We implement
this control loop on an Android device that communicates
with the drone and its onboard camera through a wireless
connection. All the control modules as well as the perception
modules (to be discussed in Section IV) are implemented
using TensorFlow [22] for convenient deployment. Figure 1
shows the UI design of the Android app and the illustration
of the control loop for target search.

III. SIMULATIONS

We build a simulation environment to investigate the
impact of the visibility level in our model. In our simu-
lations, we assume the drone can only fly to the center

1http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl

points of a 7 × 7 × 7 grid of the location space X . The
intervals defining the latitude, longitude and altitude ranges
are [−14, 14], [−21, 21], [4, 16] respectively, in meters. The
drone is assumed to move at a speed of 2 m/s along arbitrary
directions. The perception module supports up to two sensing
modes, with delays of 0.4 seconds and 2.4 seconds per frame
respectively. A 1.4-second delay is added to the cost of each
sensing modes to model the communication between the
drone and the android device. These movement and sensing
delay parameters are realistic measurement in our testbed,
and will be discussed in greater details in later sections.
To highlight the effect of this structured noise, we perform
simulations using a wide range of noise parameters. We set
those numbers in a way that is qualitatively similar to real
measurements (detailed in Section IV). To evaluate a given
policy, we collect two statistics:

• Localization accuracy measured as the percentage of
test sessions in which the drone stops at 4 meters, and
its field-of-view includes the target.

• Average search time spent on the sessions. The time
is measured using the aforementioned parameters.

An important detail is the sampling of the random vari-
ables, such as target locations, maximum visibility levels
and observations. In our simulations, the target locations are
sampled uniformly in the projection of the location grid onto
the ground. Our simulator distinguishes two sampling modes

• Structured persistent noise: the maximum visibility
level V is sampled first according to the supplied
prior distribution, and then the observations are sampled
according to Eqns. 1 given the realization of V .

• Independent noise: the observations has cross-over
probabilities that are set to mimic the average case of the
corresponding persistent noise model. More precisely,
following Eqns. 3.

p̃0→1(h) = p0→1(h)(1− PV (h))

p̃1→0(h) = (PV (h) + p1→0(h)(1− PV (h)))
(3)

where PV is the cdf. of V , and the p0→1(h) and
p1→0(h) are the false positive and false negative rates
at height h, same as in Eqns. 1.

Baseline Algorithms Prior works consider random and
heuristic policies as baselines. Another interesting baseline
is linear search at the minimum height. However, all of
these are much slower and is not the focus of this work,
thus we do not include them in our comparison. We mainly
compare our work against a simplified POMDP formulation
that removes V (the visibility level) from our visibility-
aware POMDP formulation. We highlight the importance of
considering visibility as a persistent factor in the observation
model through comparing with this baseline algorithm.

Meta Parameters for Simulations Unless specified oth-
erwise, all simulations are performed with a timeout period
of 180 seconds and the statistics are compiled from 10,000
repetitions.

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl


A. Advantage of Considering Structured Noise

We first consider a scenario in which the environment
is filled with structured noise. The designer of the search
algorithm may neglect this structure, and use the baseline
algorithm instead. This designer still has access to the
empirical observation of the error rates, which is the average
of different visibility levels (see Eqns. 3). This is compared
against a design based on accurate measurement on pV and
the adoption of visibility-aware algorithm.

We build two sets of test cases to identify situations in
which the effects of structured persistent noise are largest.
Set one concerns one sensing mode. We set the false positive
rate to 0.01, and set the intrinsic false negative rate to
a monotonically increasing linear function of height. At 4
meters the false negative rate is 0.025. The rate grows at a
step of 0.025 per two meters. These numbers are qualitatively
similar to real measurements for the less expensive sensing
mode, shown in Figure 5. We assume the maximum visibility
level is either at 12 meters or above 16 meters, for the sake of
simplicity. Thus the prior on the visibility level is completely
specified by pv(12) where pv(12) + pv(> 16) = 1. We set
pv(12) to {0.2, 0.4, 0.6, 0.8} to investigate different strength
of the persistent noise. It is assumed that sensing takes 1.8
seconds per frame (the less expensive sensing mode in the
simulator). For set two, we add a more expensive but less
erroneous sensing mode to the problem (3.8 seconds per
frame including communication cost). It is assumed to have
the same intrinsic error rates with the sensing mode in set
one, but it always has pv(> 16) = 1. This added sensing
mode thus serves as an expensive “backup”: if the less
expensive sensing mode fails above 12 meters, the “clean”
but more expensive sensing mode can kick in. Intuitively, this
should enable the drone to use a more aggressive strategy in
using the less expensive sensing mode.

TABLE I: Improved Search Time using Visibility
The baseline model has access to the empirical erro r rates averaged over
the prior on V . Simulations are performed for structured, persistent noise.

Single Time (seconds) Success Rate
Method Visibility Baseline Visibility Baseline

pV (12) = 0.2 44.09 46.76 99.82% 99.81%
Method Visibility Baseline Visibility Baseline

pV (12) = 0.4 45.72 48.35 99.88% 99.78%
Method Visibility Baseline Visibility Baseline

pV (12) = 0.6 46.04 52.30 99.92% 99.80%
Method Visibility Baseline Visibility Baseline

pV (12) = 0.8 46.85 46.91 99.93% 99.89%

Dual Time (seconds) Success Rate
Method Visibility Baseline Visibility Baseline

pV (12) = 0.2 39.76 42.82 99.88% 99.72%
Method Visibility Baseline Visibility Baseline

pV (12) = 0.4 40.08 43.53 99.87% 99.79%
Method Visibility Baseline Visibility Baseline

pV (12) = 0.6 40.07 47.47 99.79% 99.69%
Method Visibility Baseline Visibility Baseline

pV (12) = 0.8 40.07 67.02 99.76% 99.82%

Table I summarizes the results. In the single sensing

mode case, the baseline algorithm results in longer search
time except for when pV (12) = 0.8. The gain is largest
when pV (12) = 0.6. Intuitively, when persistent visibility
is insignificant (small pV (12)), the advantage of using the
visibility-aware formulation is expected to be small. Interest-
ingly, when pV (12) is very large the gain also diminishes. We
conjecture that at this particular situation, the two formula-
tions result in similar policies. Intuitively, when the empirical
error rates are large at high altitudes, the drone should
quickly descend to avoid wasting time. Access to visibility
level is not helpful in this scenario as in most realizations
the visibility is poor. This suggests considering persistent
factors when their effects are significant but moderate is
most important for designing successful search strategies.
In the dual sensing mode case however, the visibility-aware
formulation yields largest gain when pV (12) = 0.8. The
knowledge of the visibility structure seems to allow the drone
to evaluate the information from the two sensing modes more
accurately.

TABLE II: Time at Varying Realization of Visibility

Comparing search time at different realization of the visibility. pV (12)
shows the prior on visibility that controls the noise model available to the
policy search algorithm at the design phase. V > 16 can be seen as “good”
realization of visibility, as the drone can make gain information from high
altitudes. V = 12 is correspondingly the “bad” visibility realizations.

pV (12) = 0.2 pV (12) = 0.4

Method Visibility Baseline Visibility Baseline
V > 16 42.58 39.99 44.49 39.88
V = 12 50.27 73.67 47.61 60.96

pV (12) = 0.6 pV (12) = 0.8

Method Visibility Baseline Visibility Baseline
V > 16 43.68 40.10 43.82 44.06
V = 12 47.59 60.33 47.61 47.63

B. Comparing Policies

It is very interesting to understand why and how the
baseline algorithm is inferior when the structured noise
we consider is present. While it is in general difficult to
understand the numerical solution of a complex POMDP,
we provide insights through analysis on the sample path
realizations taken by individual policies. For simplicity, we
focus on the single sensing mode case.

We first look at the average time required for the search to
stop at sessions at varying realization of visibility. We note
that in our simple simulation case, the maximum visibility
level can either be at 12 meters or above 16 meters. Thus
there are only two cases, “good” or “bad” visibility. In Table
II we compare the two types of policies. In general, policies
from visibility-aware POMDP searches slightly longer in
cases where the visibility is good (only invisible above 16
meters), but when visibility is poor baseline policies perform
much longer search. This suggests that excessive sensing
in cases where visibility is poor is the main reason for the
longer overall search time of the baseline policies.

Table III shows the average number of acquisitions per-
formed at different heights. Comparing the two types of



policies, the baseline policies spend more time on or above
12 meters, as well as on the lowest height of 4 meters.
From 6 to 10 meters the baseline policies spend less time.
This suggests that the visibility-aware policies tend to avoid
spending too much time on heights subject to structured
noise. The knowledge of visibility level could lead to more
accurate belief updates, since if the visibility is found to be
poor the observations collected from 12 to 16 meters should
be discarded. This could be the reason for the shorter search
at the lowest height.

But could the visibility-aware POMDP collect information
about the maximum visibility level, given that it spends less
observations above 12 meters? To answer this question, we
examine the belief vectors of the POMDPs after stopping.
We use MAP decoding on the belief vectors and compare
against ground truth maximum visibility levels. It seems at
termination the POMDPs is in many cases aware of the true
visibility levels, as in Table IV which shows accuracies are
well above random guessing (which has 50% accuracy).

TABLE III: Acquisitions at Varying Heights
The number of acquisitions (observations) made at different heights. This
table shows the simulation under the structured noise. It compares the
behavior of the two types of policies in this realistic setting.

pV (12) = 0.2 pV (12) = 0.4

Height (meters) Visibility Baseline Visibility Baseline
4 3.72 2.89 2.58 3.11
6 1.44 1.35 2.66 1.56
8 1.70 1.78 1.56 1.58
10 2.35 1.38 3.46 2.21
12 1.03 2.00 1.01 1.01
14 1.00 1.01 1.03 1.00
16 1.74 3.17 1.00 3.58

pV (12) = 0.6 pV (12) = 0.8

Height (meters) Visibility Baseline Visibility Baseline
4 2.25 2.73 1.82 2.65
6 3.10 2.17 2.71 2.60
8 1.49 1.85 2.32 1.75
10 3.55 2.19 3.72 3.59
12 1.00 1.00 1.00 1.00
14 1.00 1.00 1.00 1.00
16 1.00 4.08 1.01 1.00

TABLE IV: Accuracy of Visibility Estimator
Accuracy of the visibility estimator, built using MAP decoding of the belief
vector at the termination of the algorithm. This table shows that the proposed
algorithm is indeed learning the true visibility level during the search.

pV (12) = 0.2 pV (12) = 0.4 pV (12)0.6 pV (12) = 0.8

89.92% 75.92% 79.01% 89.35%

C. Risk of Over-Modeling

Another important issue is the potential cost of over-
modeling. This is the opposite situation of Section III-A.
In this case, the designer assumes the perception module is
subject to the persistent factors in the environment, while
in reality such factors are not significant. To investigate this
issue, we use the same policies but test them in a simulated
environment with independent, non-structured noise. Table

V summarizes the result which suggests that it is important
not to over-model.

TABLE V: Risk of Over-Modeling
The baseline model has access to the empirical error rates averaged over
the prior on V . Simulations are performed for independent noise.

Single Time (seconds) Success Rate
Method Visibility Baseline Visibility Baseline

pV (12) = 0.2 42.99 40.73 99.80% 99.85%
Method Visibility Baseline Visibility Baseline

pV (12) = 0.4 44.89 42.12 99.81% 99.82%
Method Visibility Baseline Visibility Baseline

pV (12) = 0.6 45.23 44.76 99.89% 99.77%
Method Visibility Baseline Visibility Baseline

pV (12) = 0.8 46.83 46.09 99.84% 99.90%

Dual Time (seconds) Success Rate
Method Visibility Baseline Visibility Baseline

pV (12) = 0.2 41.20 42.56 99.89% 99.71%
Method Visibility Baseline Visibility Baseline

pV (12) = 0.4 43.62 43.46 99.71% 99.75%
Method Visibility Baseline Visibility Baseline

pV (12) = 0.6 48.85 44.44 99.26% 99.78%
Method Visibility Baseline Visibility Baseline

pV (12) = 0.8 58.18 45.01 99.11% 99.97%

IV. DATA COLLECTION AND PERCEPTION
MODULE DESIGN

A major goal of this work is to investigate target search
with drones using realistic perception modules. There is a
rich and growing literature in machine learning on efficient
neural networks for mobile applications [18], [23], [24].
We choose to implement a perception module based on
MobileNet, in particular the variant with width multiplier
of 1.0 [18]. We fine-tune from a model pre-trained on
ImageNet 2, on the dataset specifically collected for this
project. The particular architecture variant is selected to
balance the accuracy/complexity tradeoff for our application.
From benchmarking on our Samsung S8 mobile phone, the
inference speed is approximately 100 ms per frame with
224 × 224 input images 3. The limited size of our dataset
makes it necessary for us to fine-tune on an ImageNet
pretrained model. As the network are trained for 224× 224
resolutions, to alleviate overfitting we design our perception
module in such a way that it takes multiple cropped and/or
resized images to this resolution at inference.

A. Data Collection and Model Training

As an exemplary application, we consider searching for
a single basketball on the ground. To train a mobile CNN
model for this application we collect image data with one
or more basketballs on various locations and at different
heights. In total we collect 41 clips, each around 2-3 minutes
(due to the limited flying time per charge). The height ranges

2Available at https://github.com/tensorflow/models/
tree/master/research/slim

3The phone is loaded with an Android system. Due to lack of API support,
computations are performed on CPU.

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim


Fig. 2: Example images collected in this project. The images are collected at different heights, and with different background.
The figure only shows images with basketballs. Background images without basketballs are also included in the dataset.
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Fig. 3: The field of view of the drone.

Input Image

Input Image

Window with largest score among the 
6 sub-regions. Produce “1” for the 

quadrant if above threshold.

Fig. 4: Two sensing modes. Top: Sensing mode 1, resizing
quadrants. Bottom: Sensing mode 2, process multiple crops
at each quadrant.

from 2 meters to 64 meters. Due to safety and regulation
reasons, the data collection is performed at only a few
locations on and around campus with sufficient clearance
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Fig. 5: False positive and false negative rates in two sensing
modes. Quadratic fittings are provided to illustrate the gen-
eral trends, while the original data points are summarized as
scatter points.

from people, building and obstacles. There is a bias in the
data collection process towards day time and good weathers.
This bias is mainly due to daily routines at facilities where
data collection is performed. Example images from our
basketball-search dataset is shown in Figure 2.

The training and validation images are obtained by sam-
pling frames extracted from the raw clips. The extracted
frames are full-size 1280 × 720 images, the resolution of
original videos saved onboard the drone. The field-of-view
(FOV) of the drone is shown in Figure 3. The images are
fully labeled with bounding box annotations, with 1,021



Fig. 6: Illustration of varying maximum visibility levels caused by persistent factors in the scene. All pictures are taken at
8 meters. Left: Image taken from the test clip at 8 meters. The image was taken at a condition in which the basketball
has clear contrast with the background. Sensing mode 1 has only around 10% false negative rate on this clip. In similar
conditions, sensing mode 1 will consistently produce “0” only on and above 16 meters. Middle: Image taken from a field
test around 3pm in the afternoon. The plain background, the color of the sunlight as well as the long shadows make the
basketball less visible. As a result, during repeated experiments during the field test the CNN classifier consistently reports
negative (’no basketball’) on and above 8 meters. Right: Image taken from a field test at dawn. The lighting condition is
not ideal, causing large noise in the image.

positive images (w/ basketballs) and 2,304 negative images
(w/o basketballs). As discussed previously during inference
images are processed at 224 × 224 resolution, thus we use
this resolution for training. The training images are random
crops of 224 × 224 from the full-size images. Crops are
assigned a binary label with the following rules: On a positive
image, if a random crop overlaps with a basketball with more
80% of the area of the latter, then the crop is labeled “1”;
else if its overlapping with any basketball is less than 20%
of the latter its label is “0”. For negative images, all crops
are labeled “0”. We randomly discard crops to ensure crops
labeled with “1” from positive images, those labeled with “0”
from positive images and crops from negative images roughly
follow the a 1:1:1 proportion. The crop sampling process
is repeated 4 times. This results in 4,084 crops with label
“1” and 13,300 negative crops with label “0”. This sampling
procedure is essential in ensuring a balanced training set. A
random partition separates this set into a training set and a
validation set with a 3:1 ratio.

We remove the output 1000-way fully-connected layer and
replace it with a 2-way output. The model is trained with
softmax loss. The model is first trained for 20 epochs during
which all layers except for the output layer are frozen. Then
the remaining 20 epochs are trained with all layers. The fine-
tuning is performed with a learning rate of 0.02. Random
horizontal flipping and random saturation are added for data
augmentation. The resultant model has 98.94% accuracy on
training and 98.78% on validation. This CNN model is then
used as the backbone for our perception module.

B. Sensing Modes and Error Characteristics

We design two sensing modes using the mobile CNN. As
an image captured by the drone has a 1280×720 resolution,
instead of processing it in the original resolution we partition
the image into four quadrants. Each quadrant is a region
with 640 × 360 resolutions. The outputs of the perception
module are conceptually similar to the observation presented
in Section II. However, instead of producing a single bi-
nary output each quadrant provides a {0, 1} indicator of
whether the particular sub-region includes the basketball.

In our simulations and field tests these observations are
treated as observations taken from a smaller FOV compared
to the entire image. Observations from the same image
are assumed independent given the target location and the
maximum visibility level. We implement two sensing modes.
For the less expensive sensing mode 1, we directly resize
(through interpolation) to a 224 × 224 image. This results
in less accurate observations, but the inference time is only
4 × 100 = 400 ms per frame. For the more expensive
sensing mode 2, we perform linear scan within the 640×360
sub-regions, and take the maximum confidence score as the
prediction. The test time is thus 6× 4× 100 = 2400 ms per
frame. In both test modes, the resultant confidence scores
from the neural network are thresholded to obtain binary
predictions. Figure 4 illustrates the two sensing modes.

We collect a separate test set from manually operating
the drone at 1-meter intervals from 1 to 8 meters, 2-meter
intervals from 8 to 16 meters, and 4-meter intervals from
16 to 28 meters, to empirically test the error characteristics
of the proposed sensing module. Using a similar cropping
strategy as in the training procedure, at each height 150
positive and negative images are collected. However, the
crops in this case are 640 × 360, matching the size of
the four quadrants of the full-size images. We then test
the false positive and false negative rates at each height,
of the two sensing modes. The results are summarized in
Figure 5. Interestingly, different from the assumptions made
at prior works [15], the errors made by the CNN-based
perception module are highly imbalanced. As expected, the
false negative rates (or missing rates) grow as the height
increases, however false positive rates tend to decrease to
near zero values at higher altitudes. Both error rates see an
increase when approaching the ground. This is caused by
larger targets, which results in increased chance of cases in
which the basketball is partially included in the FOV.

As discussed in Section II, an important characteristic we
observe from our field tests is that the predictions made
by the neural network seems to have a “visibility level”
structure. Figure 6 illustrates some conditions in which the



perception module fails in this way, namely consistently pro-
ducing “0” even if the basketball is present during repeated
tests, for all images taken above a scene dependent level. This
level tends to stay constant until after changing to another
field test location or perform another field test at a different
time of the day. Limited by available data, it is still impos-
sible to make statistically significant conclusions. However,
this phenomenon is intuitive for the search application using
drones, and has large potential impact to the search strategy.
In future works we plan to investigate this further through
improved data collection or through video simulation.

V. CONCLUSION

In this work, we investigate the problem of target search
using drones. We take a real-world approach, and build a
testbed that is used to investigate realistic conditions for this
application. In particular, from testing perception modules
using recent computer vision algorithms, we identify that
persistent factors in the environment could have unexpected
impact to the output of the observations. From our extensive
studies through simulations, such factors have a significant
influence on the design of the search algorithm. Important fu-
ture directions include characterizing the impact of persistent
factors more precisely, developing methods to automatically
detect existence of those structures to avoid over-modeling,
as well as to designing better computer vision algorithms
that are more robust for target search and other related
applications using drones.
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