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Abstract—Information acquisition and utilization problems
(IAUP) form a class of stochastic decision problems in which a
decision maker is faced with utilizing a stochastically varying
(and uncontrollable) environment. However, the state of the
environment, due to the limited nature of the measurements
in terms of dimension/cost/accuracy, is only partially known
to the decision maker. The decision maker, by carefully con-
trolling the sequence of actions with uncertain outcomes and
noisy measurements, dynamically refines the belief about the
stochastically varying parameters of interest. A generalization
of hidden Markov models and a special case of partially
observable Markov models, information acquisition is both an
informational problem as well as a control one.

In this tutorial, we start with the stochastic control view of
the problem and show that the class of information acquisition
and utilization problems is equivalent to generalized dynamic
tracking. We also state and discuss the appropriate dynamic
programming formulation and the insight it provides. In the
next section of the tutorial, we focus on active hypothesis
testing as an important special case of information acquisition
problems. This problem has been studied in various areas
of applied mathematics, statistics, and engineering. After a
short discussion on the historical developments due to Wald,
Blackwell, DeGroots, and Chernoff, we catalog recent advances
to connect DeGroot’s information utility framework with the
Shannon theoretic concept of uncertainty reduction to introduce
a symmetrized divergence measure: Extrinsic Jensen-Shannon
(EJS) divergence.

In the last part of tutorial, we visit two special cases of the
problem: Noisy Search and Bayesian Active Learning. In both,
we use the EJS divergence to propose a new learning/search
strategy and develop performance guarantees. Obtaining (tight)
lower and upper bounds on the optimal performance, as a
corollary, proves the significant (asymptotic) performance gain
of sequential and adaptive search strategies over open-loop ones.

Index Terms—Information Acquisition and Utilization, Par-
tially Observable MDP, Active Hypothesis Testing.

I. INTRODUCTION

This paper focuses on the problem of information acqui-
sition and utilization where a decision maker, by carefully
controlling a sequence of actions with uncertain outcomes,
dynamically refines his/her belief about stochastically time-
varying parameters of interest in order to utilize the system
as efficiently as possible.

This work was partially supported by National Science Foundation
Grants: CCF-1513883, CNS-1329819, AST-1247995, and CCF-1302588.
The author would like to acknowledge her current PhD students S. Chiu
and A. Lalitha for their generous help as well as her former PhD student,
Dr. M. Naghshvar, whose dissertation laid out much of what is discussed
in this tutorial paper.

This tutorial discusses a new theoretical framework for
stochastic learning and decision-making in such a setting
termed Information Acquisition and Utilization Problems
(IAUP). IAUP is a special case of partially observable
Markov decision problems (POMDP) [1] with several unique
properties. First, in an IAUP, there is a twin-set of actions
explicitly corresponding to the joint activities of acquisition
(typically corresponding to sensing, sampling, measurement,
etc) and utilization (typically corresponding to transmission,
cost minimization, etc). While, this explicitly allows for
different costs to be associated with different acquisition
choices, reflecting how much energy/bandwidth is needed to
obtain a particular granularity and accuracy of information,
the twin-actions in our IAUP formulation do not affect
the underlying stochastic evolution of the environment (the
time-varying stochastic process). In other words, while the
problem clearly fits in the general framework of stochastic
control, it is an entirely informational problem with a real-
time flavor (tracking states in a dynamic fashion). In par-
ticular, the first contribution of this work is to establish the
general attributes of IAUPs in form of its average cost opti-
mality equation (ACOE) and its equivalence to a generalized
real-time tracking problem. This result concretely confirms
our original intuition that IAUPs are, unlike most general
stochastic control problems POMDP, purely informational
problems.

The second part of the tutorial focuses on a synthesis
of the prior works on active hypothesis testing [2]. Ac-
tive hypothesis testing has been studied in various areas
of applied mathematics, statistics, and engineering. After
a short discussion on the historical developments due to
Wald, Blackwell, DeGroot’s, and Chernoff, we catalog recent
advances to connect DeGroot’s information utility framework
with the Shannon theoretic concept of uncertainty reduction
to introduce a symmetrized divergence measure: Extrinsic
Jensen-Shannon (EJS) divergence. We then investigate the
performance of a heuristic based this divergence in the
context of the two special cases of noisy dynamic search [3],
and Bayesian Active Learning with non-Persistent Noise [4].

Notation: Let [x]+ = max{x, 0}. We use boldface letters
to represent vectors. And we write ρ↓ to denote sorted
element of a vector ρ in descending order, i.e., ρ↓i rep-
resents the ith largest element of ρ. For any set S, |S|
denotes the cardinality of S. The space of all probability
distributions on set A is denoted by P(A). The filtration
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{Ft} denotes the nested σ-algebra associated with random
sequence Y1:t−1. All logarithms are in base 2. The entropy
function on a vector ρ = [ρ1, ρ2, . . . , ρM ] ∈ [0, 1]M is
defined as H(ρ) =

∑M
i=1 ρi log

1
ρi

, the Kullback-Leibler
(KL) divergence between distribution P and Q is denoted by
D(P‖Q) =

∑
x P (x) log P (x)

Q(x) and the mutual information
between random variable X and Y is defined as I(X,Y ) =∑

x,y p(x, y) log
p(x,y)

p(x)p(y) , where p(x, y) is the joint distribu-
tion and p(x) and p(y) are the marginals of X and Y with the
convention 0 log a

0 = 0 and b log b
0 = ∞ for a, b ∈ [0, 1] with

b �= 0. Let Bern(p) denote the Bernoulli distribution with
parameter p, and I(q, p[q]) denote the mutual information of
the input X ∼ Bern(q) and the output Y of a BSC channel
with crossover probability p[α]. C(α) := I(1/2, p(α)) de-
notes the capacity of a BSC with crossover probability p[α]
and C1 (δ) := D(Bern(p[δ]) ‖Bern(1−p[δ])) denotes the best
possible error exponent of adaptive sequential search with
search size δ. Let P(·) denote probability measure, and E[·]
the expectation with resp. to P.

II. IAUP: PROBLEM FORMULATION

Consider the following generalized information acquisition
and utilization problem (IAUP) describing a Markov chain
with M possible states. Let S(t) describe the state of the
system with a Markovian dynamic and according to transition
matrix P . A Bayesian decision maker seeks to utilize the
system by (sequentially) acquire the state of the system
and subsequently utilize it. More structured than a general
partially observable Markov decision problem (POMDP), the
underlying dynamic is assumed to be independent of the
decision maker’s decision and actions. However, in contrast
to hidden Markov model (HMM) formulation, our decision
maker has the ability to control the collected observations’
“information content” and hence the manner the system is
utilized. In particular, we assume there are K acquisition and
L utilization actions which can be employed. Information
acquisition a costs Ca independently of the state of the sys-
tem and provides an observation sample Z whose conditional
distribution given the true state S(t) = i is fixed and known,
while utilization action u, provides a reward depending on
how well u is ”matched” to the true state of the system
S(t) = i. Mathematically, the problem is described using
the following setup:

Problem-IAUP
1) State St ∈ {1, 2, . . . ,M} denotes the current state (out

of M possible ones) of a Markov chain with transition
matrix Q.

2) Z is the observation space. Observation Zt ∈ Z
denotes the observed sample at time t.

3) A is the acquisition space and is assumed to be finite
with |A| = K < ∞.

• For all a ∈ A, s ∈ [M ], and z ∈ Z , the obser-
vation kernel qas (z) is the probability of observing
Zt = z when action a has been taken and the
current state of the process is s (independent of
time and all other random variables).

• Function c : A → R
+, is the one-step cost function

associated with acquisition action a.
• It is often useful to allow for a special acquisition

action � with zero acquisition cost under which
no observation is collected (or equivalently the
collected observation is independent of the current
state). Exerting this action at time t, i.e. at = � is
equivalent to skipping the sampling process.

4) U is the utilization space and is assumed to be finite
with |U| = L < ∞.

• Functional r : U ×{1, 2, . . . ,M} → R
+ describes

the one-step reward r(u, i) associated with taking
utilization action u at state i.

5) Let C = A×U be the set of allowable acquisition and
utilization pairs.

Given a Bayesian prior ρ on the initial distribution of
X1, the above problem is a partially observable Markov
decision problem (POMDP) where the state transition matrix
is Q and the observations are noisy. The objective here is
to find the optimal sequence of acquisition and utilization
actions, (At, Ut) ∈ C in order to maximize the expected
total weighted reward minus cost over a finite horizon:

JT (ρ) := E

[
T∑

t=1

r(Ut, St)− λ

T∑
t=1

c(At)

]
. (1)

or a discounted infinite horizon:

Jβ(ρ) := E

[ ∞∑
t=1

βtr(Ut, St)− λ

∞∑
t=1

βtc(At)

]
. (2)

A slightly less stringent objective is that of minimizing the
expected (long-term) average criterion:

J(ρ) := lim
T→∞

1

T
E

[
T∑

t=1

r(Ut, St)− λ

T∑
t=1

c(At)

]
. (3)

III. IAUP: ANALYSIS

In this section, we provide two sets of structural results.
In Subsection III-A, we show the equivalence between our
general formulation of information aquisition and utiliza-
tion problems and that of a generalized tacking. In Sub-
section III-B, we provide the partially observable Markov
decision problem (POMDP) representation of the problem
and the corresponding dynamic programs associated with the
above cost criteria.

A. Equivalence to Generalized Tracking

Note that the posterior distribution of the state is strongly
dependent on the acquisition action a through the Bayes’
update but is not directly affected by the utilization action.
Also the Markovian transition (prediction step) is not affected
by either acquisition or utilization actions since it only incor-
porates the the transition matrix of the underlying Markov
chain. This separated impact of acquisition and utilization
actions, we will argue in this subsection, results in further
simplification and analytic characterization of the solution
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to special classes of IAUP. In particular, we will show next
that the problem of information acquisition and utilization is
nothing but an active tracking problem:

Problem-GT

1) State St ∈ {1, 2, . . . ,M} denotes the current state (out
of M possible ones) of a Markov chain with transition
matrix Q.

2) Z is the observation space. Observation Zt ∈ Z
denotes the observed sample at time t.

3) A is the acquisition space and is assumed to be finite
with |A| = K < ∞.

• For all a ∈ A, s ∈ [M ], and z ∈ Z , the obser-
vation kernel qas (z) is the probability of observing
Zt = z when action a has been taken and the
current state of the process is s (independent of
time and all other random variables).

• Function c : A → R
+, is the one-step cost function

associated with acquisition action a.
• It is often useful to allow for a special acquisition

action � with zero acquisition cost under which
no observation is collected (or equivalently the
collected observation is independent of the current
state). Exerting this action at time t, i.e. at = � is
equivalent to skipping the sampling process.

4) U is the declartion space and is assumed to be finite
with |U| = L < ∞.

• Let functional ∆ : U × {1, 2, . . . ,M} → R
+

describe the distortion cost ∆(i, u) associated with
representing state i with element u.

Remark 1. The classic problem of active filtering/tracking
is a special case of Problem-GT: let utilization action
Ut := Ŝt ∈ U = S, be the detection/tracking of the Markov
state, via noisy sensing at the detection cost r(Ŝt, St) ={

1 if Ŝt = St

0 if Ŝt �= St
plus the unit flat acquisition/sampling

cost c(At) =

{
0 if At = �
1 otherwise .

Furthermore, we note that any Problem-IAUP can be
written as a Problem-GT. To see this, define r∗(i) :=
maxu r(u, i), for i = 1, 2, . . . ,M . Now the distortion
function ∆(i, u) := r∗(i) − r(u, i) has the interpretation
of the mismatch cost between state i and element u (in
particular, there exists u∗(i) = maxu r(u, i) for which
∆(i, u∗(i)) = 0). Now consider the objective of minimizing
the overall cost over a finite horizon:

J̃T (ρ) := E

[
T∑

t=1

∆(Ut, St) + λ

T∑
t=1

c(At)

]
. (4)

or a discounted infinite horizon:

J̃β(ρ) := E

[ ∞∑
t=1

βt∆(Ut, St) + λ

∞∑
t=1

βtc(At)

]
(5)

and the expected (long-term) average criterion:

J̃(ρ) := lim
T→∞

1

T
E

[
T∑

t=1

∆(Ut, St) + λ

T∑
t=1

c(At)

]
. (6)

It is straightforward to show that:

JT (ρ) = R̄T (ρ)− J̃T (ρ),

Jβ(ρ) = R̄β(ρ)− J̃β(ρ),

J(ρ) = R̄(ρ)− J̃(ρ)

where

R̄T (ρ) =

T∑
t=1

< ρQt−1, r∗ >,

R̄β(ρ) =

∞∑
t=1

βt < ρQt−1, r∗ >,

R̄(ρ) =
1

T

T∑
t=1

< ρQt−1, r∗ >,

i.e. the first term after each equality is equal to the maximum
expected utilization reward if the observations were perfect,
and hence is independent of the choice of actions chosen.
This proves that the original IAUP can be written in form of
a generalized active state tracking problem in noise, where
the acquisition actions are sequentially selected to minimize
the overall distoriton-plus-acquisition-cost.

Remark 2. The problem real-time joint Markov source–
channel coding over a discrete memoryless channel with
feedback [5] can also be cast as a special case of Problem-
GT where the space of acquisition actions is the set of
allowable encoding functions and the space of utilization
actions coincides with the state space of the Markov source.

B. Dynamic Programming Equations

Given a Bayesian prior ρ on the initial distribution of
X1, our POMDP problem is equivalent to an MDP whose
information state (sufficient statistics) at time t is the belief
vector ρ(t) = [ρ1(t), . . . , ρM (t)] where

ρi(t) = Prob(Xt = i |Z1:t ),

and the information state space is defined as P(Ω) = {ρ ∈
[0, 1]M :

∑M
i=1 ρi = 1}.

Let Φa (ρ, z) denote the posterior belief state, given cur-
rent belief (posterior), the acquisition action a, and channel
output z. This means that for all i ∈ Ω, posterior belief

Φa (ρ(t), z) (i) :=
ρ+i (t)qa(z|i)∑M

j=1 ρ
+
j (t)qa(z|x)

,

where

ρ+i (t) := P(Xt+1 = i|Z1:t) =
∑
j∈Ω

ρj(t)Qji

is the pre-transmission one step predictor of the state.
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Furthermore, for an acquisition action a, define the cor-
responding Markov operator T

a : M(P(Ω)) → M(P(Ω))
as

(Tag)(ρ) := E [g (Φa(ρQ,Z))] ,

where the expectation is taken with respect to conditional
distribution of Z given action a and prior ρ. In addition,
for utilization action u and ρ ∈ P(Ω), to allow for ease of
notation, let us denote by ∆(ρ, u) =

∑
i ρi(t)∆(i, u) the ex-

pected utilization reward and by ∆∗(ρ) = minu∈U ∆(ρ, u).

Fact 1 (Propositions 3.1 in [6]). Define recursively the
functions:

VT (ρ) =min
u∈U

∆(ρ, u) (7)

Vt(ρ) = min
(a,u)∈C

∆(ρ, u) + λc(a) + (TaVt+1)(ρ)

=min
u∈U

∆(ρ, u) + min
a∈A

[λc(a) + (TaVt+1)(ρ)]

=∆∗(ρ) + min
a∈A

[λc(a) + (TaVt+1)(ρ)] . (8)

Then V1(ρ1), known as the optimal value function at t = 1,
is equal to the minimum cost J̃T (ρ1) in (4) with the prior
belief ρ1.

Important consequences of the above set of dynamic
programming equations are as follows.

1) The minimizers of (7) and (9) constitute deterministic
optimal Markov policy (selecting acquisition and dec-
laration actions deterministic functions of the sufficient
statistic ρ).

2) The optimal acquisition and utilization can be selected
in a separated fashion.

3) The optimal utilization is the Bayes’ risk minimizer
which, at any given belief vector ρ, minimizes the
expected mismatch between the utilization action and
the (hidden) state.

4) If Vt+1(ρQ) ≤ c(a) + (TaVt+1)(ρ) for all a ⊂ A −
{�}, then it is optimal to skip the next sample (take
utilization action �). The result can be generalized for
skipping the next τ transmissions.

Similar results can be obtained for J̃β(ρ).

Fact 2. Consider the solution to the following fixed point
equation:

V β(ρ) =∆∗(ρ) + min
a∈A

[
λc(a) + β(TaV β)(ρ)

]
. (9)

Then V β(ρ1), known as the optimal value function, is equal
to the minimum cost J̃β(ρ1) with the prior belief ρ1.

The next theorem establishes the dynamic programming
optimality equation for the expected average cost criterion:

Fact 3. If there exists scalar V ∗ and bounded function W ∈
M(PΩ) such that

V ∗ +W (ρ) =∆∗(ρ) + min
a

[λc(a) + (TaW )(ρ)] , (10)

then V ∗ is equal to the minimum cost J̃(ρ1) in (6) (which
becomes independent of initial prior).

Similarly, the above dynamic programming result (and the
corresponding optimality equation) has the following simple
consequences:

1) The minimizer of (10) constitutes a deterministic sta-
tionary optimal Markov policy (selecting acquisition
and declaration actions as deterministic and time in-
variant functions of the sufficient statistic ρ):

• The optimal utilization is the Bayes’ risk mini-
mizer which, at any given belief vector ρ, max-
imizes the expected reward (minimizing the ex-
pected risk).

• The optimal acquisition is given as :

argmax
a

{W (ρ)− (TaW )(ρ)− λc(a)} (11)

2) An important question related to Fact 3 is if and
when V ∗ can be approximated by considering the
finite horizon problem of (7)-(9) as T gets large [7].
Similarly, another important question relies on the
vanishing discount technique with an infinite horizon
discounted cost criterion. Such approximation results,
if proved, would enable computational solutions via
value/policy iteration.

So far these results depend on the existence of V ∗ and
function W satisfying (10). An important question is the
sufficient and necessary conditions for the existence of V ∗

and function W satisfying (10). The following proposition,
whose proof follows from [7], provides a partial answer.

Theorem 1. Assume that the state transition matrix Q is ape-
riodic and irreducible. In addition, assume that P a(·|X = x)
is absolutely continuous with respect to P a(·|X = x′), for
all x, x′ ∈ X . Under these conditions, there exist V ∗ and
bounded function W satisfying (10).

Intuitively, the optimal solution to this optimization prob-
lem requires sufficiently accurate characterization of func-
tions V1, V2, . . . , VT as well as W . Such a characterization,
however, depends on the designer’s ability to identify the
optimal trade-off between the cost of information acquisition
versus the corresponding utilization rewards, as well as a
trade-off between gathering information now versus shaping
the distributions in the hopes of high informational return. A
possible solution is to compute these functions numerically
using the value iteration technique [8, Chapter 9.5] or to esti-
mate it using basis functions. While there are some theoreti-
cal guarantees regarding the convergence to the optimal value
function [8, Proposition 9.17], the value iteration quickly
becomes intractable as the number of hypotheses grows; in
contrast, the latter method of basis function approximation is
easier to implement but provides no convergence guarantee.
In lieu of numerical approximation of or derivation of a
closed-form for the optimal value, we introduce alternative
heuristics. Before we discuss these heuristics, however, we
consider the very special case of stochastic degradation. In
particular, consider
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Definition 1 (Blackwell Ordering [9]). Given two groups
of conditional probability densities qa = {qai }i∈Ω and qb =
{qbi }i∈Ω (on space Z), we say that qb is less informative than
qa (qb ≤B qa) if there exists a stochastic transformation W
from Z to Z such that1

qbi (z) =

∫
qai (y)W (y; z)dy ∀i ∈ Ω. (12)

The following fact is an important outcome of Blackwell
ordering.

Fact 4 (see [10] ch. 14.17). Let qa = {qai }i∈Ω and qb =
{qbi }i∈Ω be two groups of observation kernels. If qb ≤B qa,
then (Tag)(ρ) ≤ (Tbg)(ρ) for all ρ ∈ P(Ω) and for any
concave function g : P(Ω) → R.

The following lemma provides the technical condition to
ensure relevance of the above Fact to our DP formulation.

Lemma 1. Functions V1, V2, . . . , VT as well as W are
convex in belief state ρ.

C. Information Utility

As discussed earlier, in lieu of numerical approximation
of or derivation of a closed-form for V ∗, in this subsection,
we introduce alternative notions of information maximizing
which gives rise to simple deterministic and Markov heuristic
policies. Note that characterization of the optimal policy
in the previous subsection has the following interpretation
associated with the following notion of information utility.

Definition 2. Associated with a concave functional h :
P(Θ) → R+, the information utility of action a at informa-
tion state ρ is defined as IU(a,ρ, h) := h(ρ)− (Tah)(ρ).

Together with (11), this results in the following optimal
deterministic choice of acquisition action:

argmax
a

{IU(e,ρ,W )− λc(a)}
maximizing the information utility minus cost at any given
belief ρ. This suggests that by choosing an appropriate
notion of information utility, any IAUP can be reduced
to a sequence of one-shot problems in each of which an
optimal sensing action is selected deterministically so as to
provide the highest amount of information. Next, we give
the definition of Jensen–Shannon (JS) divergence, and we
introduce Extrinsic Jensen–Shannon (EJS) divergence. In
Section III-D, we show that JS and EJS divergences are equal
to information relative to the Shannon entropy and average
log-likelihood function, respectively.

1) Symmetric Divergences: We first recall some well
known divergences. The Kullback–Leibler (KL) divergence
between two probability distributions PZ and P ′

Z over a finite
set Z is defined as D(PZ‖P ′

Z) :=
∑

z∈Z PZ(z) log
PZ(z)
P ′

Z(z)

with the convention 0 log a
0 = 0 and b log b

0 = ∞ for

1Function W : Z × Z → R+ is called a stochastic transformation
from Z to Z if it satisfies

∫
Z W (y; z)dz = 1 for all y ∈ Z and∫

Z W (y; z)dy < ∞ for all z ∈ Z .

a, b ∈ [0, 1] with b �= 0. The KL divergence satisfies the
following lemma.

Lemma 2. For any two distributions P and Q on a set Z
and α ∈ [0, 1], D(P‖αP + (1− α)Q) is decreasing in α.

The KL divergence is not symmetric, i.e., in general

D(PZ‖P ′
Z) �= D(P ′

Z‖PZ).

The J divergence [11] and L divergence [12] symmetrize
the KL divergence:

J(P1, P2) := D(P1‖P2) +D(P2‖P1), (13)

L(P1, P2) := D
(
P1‖1

2
P1 +

1

2
P2

)
+D

(
P2‖1

2
P1 +

1

2
P2

)
.

(14)

The L divergence can be related to the Jensen difference with
respect to the Shannon entropy function [13]:

1

2
L(P1, P2)

= H

(
1

2
P1 +

1

2
P2

)
−
(
1

2
H(P1) +

1

2
H(P2)

)
. (15)

The Jensen–Shannon (JS) divergence [13], [12] is defined
as an M -dimensional generalization of the L divergence.
Given M distributions P1, P2 . . . , PM over a set Z and
a vector of a priori weights ρ = [ρ1, ρ2, . . . , ρM ], where
ρ ∈ [0, 1]M and

∑M
i=1 ρi = 1, the JS divergence is defined

as [13], [12]:

JS(ρ;P1, . . . , PM ) :=

M∑
i=1

ρiD

(
Pi‖

M∑
j=1

ρjPj

)

= H

( M∑
i=1

ρiPi

)
−

M∑
i=1

ρiH(Pi).

(16)

Let θ be a random variable that takes values in {1, 2, . . . ,M}
and has probability mass function ρ and Z ∼ Pθ (which
implies that P (Z = z) =

∑M
i=1 ρiPi(z)). From (16),

JS(ρ;P1, . . . , PM ) = H(Z)−H(Z|θ) = I(θ;Z), (17)

where I(θ;Z) is the mutual information between θ and Z .
From (17) and the fact that I(θ;Z) = H(θ) − H(θ|Z),

the JS divergence can also be expressed as:

JS(ρ;P1, . . . , PM ) (18)

= H(ρ)−
∑
z∈Z

Pρ(z)H
([ρ1P1(z)

Pρ(z)
, . . . ,

ρMPM (z)

Pρ(z)

])
,

(19)

where Pρ =
∑M

i=1 ρiPi.
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2) A New Divergence: Extrinsic Jensen–Shannon (EJS)
Divergence: We introduce the Extrinsic Jensen–Shannon
(EJS) divergence as an M -dimensional generalization of
J divergence as

EJS(ρ;P1, . . . , PM ) :=

M∑
i=1

ρiD

(
Pi‖

∑
j �=i

ρj
1− ρi

Pj

)
,

(20a)

when ρi < 1 for all i ∈ {1, . . . ,M}, and as

EJS(ρ;P1, . . . , PM ) := max
j �=i

D(Pi‖Pj) (20b)

when ρi = 1 for some i ∈ {1, . . . ,M}.
Let U(·) denote the average log-likelihood function:

U(ρ) :=

M∑
i=1

ρi log
1− ρi
ρi

. (21)

Lemma 3 (Properties of EJS Divergence). The EJS diver-
gence defined in (20) satisfies the following three properties.

1) It is lower bounded by the JS divergence:

EJS(ρ;P1, . . . , PM ) ≥ JS(ρ;P1, . . . , PM ). (22)

2) It can be expressed as

EJS(ρ;P1, . . . , PM ) (23)

= U(ρ)−
∑
z∈Z

Pρ(z)U
([ρ1P1(z)

Pρ(z)
, . . . ,

ρMPM (z)

Pρ(z)

])
.

(24)

3) It is convex in the distributions P1, . . . , PM .

Remark 3. The EJS divergence defined in this section is
not the unique generalization of the J divergence. There
exist other M -dimensional generalizations of the J diver-
gence such as

∑M
i=1 ρi

∑M
j=1 ρjJ(Pi, Pj) which was studied

in [14]. However, as will be discussed in details later,
properties of EJS such as the one provided by (23) above
makes it a proper notion of information for our applications
of interest.

D. Heuristic Policies: Maximizing (E)JS Divergence

In this section, we show that JS and EJS divergences
are proper notions of information, and propose deterministic
Markov policies based on greedy maximization of these
divergences.

Given a belief vector ρ ∈ P(Ω) and a sensing action a ∈
A, we use the notations

JS(ρ, a) := JS(ρ; qa1 , q
a
2 , . . . , q

a
M ), (25)

EJS(ρ, a) := EJS(ρ; qa1 , q
a
2 , . . . , q

a
M ). (26)

Definition 2 together with properties (16) and (23) shows
that the JS and EJS divergences are nothing but the infor-
mation relative to the entropy and average log-likelihood
functions, respectively, i.e.,

JS(ρ, a) (27)

= I(ρ, a,H), (28)
EJS(ρ, a) = I(ρ, a, U). (29)

We also use the following notations to denote the amount
of information a Markov stationary policy π obtains in a
single step:

JS(ρ, π) :=
∑
a∈A

π(a|ρ)JS(ρ, a), (30)

EJS(ρ, π) :=
∑
a∈A

π(a|ρ)EJS(ρ, a). (31)

We are now ready to introduce our heuristic policies.
Policy πJS is defined as follows: given belief state ρ(t)

select argmax
a∈A

JS(ρ(t), a).

Similarly, policy πEJS is defined as follows: given the
belief state ρ(t), select argmax

a∈A
EJS(ρ(t), a).

Remark 4. Note that as the belief about one of the hypothe-
ses, say ρi, approaches 1, D(qai ‖

∑M
j=1 ρjq

a
j ) converges to

D(qai ‖qai ) = 0 for any action a ∈ A; and consequently,
independently of the observation kernels qa1 , q

a
2 , . . . , q

a
M ,

divergence JS(ρ, a) approaches 0. In contrast, as ρi becomes
large, EJS(ρ, a) approaches D(qai ‖

∑
j �=i

ρj

1−ρi
qaj ) and

hence, πEJS selects action a such that D(qai ‖
∑

j �=i
ρj

1−ρi
qaj )

is maximized, i.e., it selects an action that distinguishes Hi

from the collection of alternate hypotheses the most. As we
will see in the next section, these different philosophies result
in significant performance difference.

1) Numerical Example: Consider an IAUP with the time-
invariant and binary hidden state, whose nadditive Gaussian
noisy observations under two actions a and b shown in Fig. 1.
In this example, the observation noise associated with actions
a and b is such that it adds unequal noise to the hypotheses.

1

2

Sensing action a

1

2

Sensing action b

Z

)5.0,0(N

)25.0,0(N

+

+

Z

)25.0,0(N

)5.0,0(N

+

+

θ

θ

Fig. 1. Active binary hypothesis testing with additive Gaussian noise.

Figures 2 and 3 show respectively the JS and EJS di-
vergence for all ρ ∈ P(Ω) and for sensing actions a and
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b. It is clear from these figures that πJS selects action a
when ρ1 ≥ 0.5 and selects action b otherwise; while πEJS

does exactly the opposite. These figures illustrate the fact
mentioned in Remark 4.
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Fig. 2. JS divergence for sensing actions a and b.
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EJS(ρ, a)
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Fig. 3. EJS divergence for sensing actions a and b.

IV. ACTIVE HYPOTHESIS TESTING

A. Problem Formulation

Here, we provide a precise formulation for the active
M -ary hypothesis testing problem.

Problem-AHT
1) Let Hi, i ∈ Ω = {1, 2, . . . ,M}, denote M hypotheses

of interest among which only one holds true. Let θ
be the random variable that takes the value θ = i on
the event that Hi is true for i ∈ Ω. We consider a
Bayesian scenario with a given prior (belief) about θ,
i.e., initially P (θ = i) = ρi(0) > 0 for all i ∈ Ω.

2) A is the set of all sensing actions and is assumed to
be finite with |A| = K < ∞.

3) Z is the observation space. For all a ∈ A, the obser-
vation kernel qai (·) (on Z) is the probability density
function for observation Z when action a has been
taken and Hi is true. We assume that observation ker-
nels {qai (·)}i∈Ω,a∈A are known, and the observations
are conditionally independent over time.

4) Let L, L > 1, denote the penalty for a wrong
declaration, i.e., the penalty of selecting Hj , j �= i,
when Hi is true.2

5) Let τ be the (stopping) time at which the decision
maker retires.

6) The objective is to find a stopping time τ , a sequence
of sensing actions A(0), A(1), . . . , A(τ − 1), and a

2In general, we can define a loss matrix [Lij ]i,j∈Ω, where Lij denotes
the penalty (loss) of selecting Hj when Hi is true.

declaration rule d : Aτ × Zτ → Ω that collectively
minimize the expected total cost

E
[
τ + L1{d(Aτ−1,Zτ−1) �=θ}

]
, (32)

where Aτ−1 = [A(0), . . . , A(τ − 1)], Zτ−1 =
[Z(0), . . . , Z(τ − 1)], and the expectation is taken
with respect to the initial belief on θ as well as the
distributions of action sequence, observation sequence,
and the stopping time.

Note that in the above problem, the cost of a test is stated
in terms of minimizing the expected sample size plus the
expected penalty of wrong declaration. This problem is a
special case of IAUP problem where the state is fixed with a
termination state (resulting in a shortest path version of the
problems of cumulative cost studied earlier.)

We are interested in the characterization of this cost as a
function of penalty L and the number of hypotheses M .
It is easy to show that under the optimal selection rule,
the probability of error approaches zero as L approaches
infinity3.

B. Analysis: Dynamic Programming

Note that at any given information state ρ, taking sensing
action a ∈ A followed by the optimal policy results in
expected total cost 1 + (TaV ∗)(ρ) where 1 denotes the one
unit of time spent to take the sensing action and collect
the corresponding observation sample, and (TaV ∗)(ρ) is the
expected value of V ∗ on the space of posterior beliefs; while
declaration j results in expected cost (1−ρj)L where (1−ρj)
is the probability that hypothesis Hj is not true, and L is
the penalty of making a wrong declaration. This intuition,
while relying on the compactness of P(Ω) to treat various
measurability issues, can be formalized in the following
dynamic programming equation.

Theorem 2. The optimal value function V ∗ : P(Ω) → R+ is
the unique solution to the following fixed point DP equation:

V ∗(ρ) = min
{
1 + min

a∈A
(TaV ∗)(ρ),min

j∈Ω
(1− ρj)L

}
. (33)

Now this DP characterization can be used to find the
following lower bounds.

C. Analysis: Lower Bounds on the Optimal Performance

We rely on the following Assumptions in order to obtained
lower bound on the optimal performance.

Assumption 1. For any two hypotheses i, j ∈ ΩM , i �= j,
there exists an action a, a ∈ AM , such that D(qai ‖qaj ) > 0.

Assumption 2. There exists ξM < ∞ such that

max
i,j∈ΩM

max
a∈AM

sup
z∈Z

log
qai (z)

qaj (z)
≤ ξM .

3. In particular, it can be shown that the above problem is (asymptotically)
equivalent to the problem of minimizing the (expected) number of samples
subject to a constraint ε = (L logL)−1 on the probability of error [2].

7641



Assumption 3 ensures the possibility of discrimination
between any two hypotheses, hence ensuring that the prob-
lem of active hypothesis testing has a meaningful solution.
Assumption 5 implies that no two hypotheses are fully
distinguishable using a single observation. Assumption 5 is
a technical one which enables our non-asymptotic character-
izations of the upper and lower bounds. In Subsection IV-E,
we discuss the consequence of weakening this assumption in
detail.

If there exists a functional V : P(ΩM ) → R+ such that
for all belief vectors ρ ∈ P(ΩM ),

V (ρ) ≤ min{1 + min
a∈AM

(TaV )(ρ), min
j∈ΩM

(1 − ρj)L},

then V ∗(ρ) ≥ V (ρ) for all ρ ∈ P(ΩM ). In this section,
we use the above fact to find three lower bounds for V ∗.
These lower bounds are non-asymptotic and complementary
for various values of the parameters of the problem.

Theorem 3. Under Assumption 3 and for L > 1 and ρ ∈
PL(ΩM ),

V ∗(ρ)

≥ V1(ρ) :=


 M∑

i=1

ρimax
j �=i

log 1−L−1

L−1 − log ρi

ρj

max
a∈AM

D(qai ‖qaj )
−K ′

1



+

,

where K ′
1 is a constant independent of L.

Let define

Dmax(M) := max
i,j∈ΩM

max
a∈AM

D(qai ‖qaj ), (34)

Imax(M) := max
a∈AM

max
ρ̂∈P(ΩM)

JS(ρ̂, a). (35)

Next we provide another lower bound which is more appro-
priate for large values of M or small values of Imax(M).

Theorem 4. Under Assumption 3 and for L > 1 and ρ ∈
PL(ΩM ),

V ∗(ρ) ≥ V2(ρ) :=

[
H(ρ)−H([α(L,M), 1− α(L,M)])

Imax(M)

− α(L,M) log(M − 1)

Imax(M)
+ α(L,M)L

]+
,

where α(L,M) := M−1
M−1+2LImax(M) .

Remark 5. The lower bounds in Theorems 3 and 4 can
be explained by the following intuition: For any uncertainty
function V : P(ΩM ) → R, the number of samples required
to reduce the uncertainty down to a target level Vtarget has to
be at least V (ρ(0))−Vtarget

∆max(V ) , where ∆max(V ) is the maximum
amount of reduction in V associated with a single sample,
i.e., ∆max(V ) = max

a∈AM

max
ρ∈P(ΩM )

I(ρ, a, V ). The lower bound

in Theorem 3 is associated with such a lower bound when
taking V to be the log-likelihood function, while the lower
bound in Theorem 4 is associated with setting V to be the
Shannon entropy.

Theorem 4 can be used to show that when L < logM
Imax(M) ,

the problem of active hypothesis testing will have a trivial
solution. The precise statement is given by the following
corollary.

Corollary 1. Let L < logM
Imax(M) , and suppose the decision

maker has a uniform prior belief about the hypotheses. For
sufficiently large M , the optimal policy randomly guesses the
true hypothesis without collecting any observation, hence,
Pe, the probability of making a wrong declaration, ap-
proaches 1− 1

M .

Next theorem combines the above lower bounds and is
appropriate when L and M are both large.

Theorem 5. Under Assumptions 3 and 5, and for L >
max{1, logM

Imax(M)} and arbitrary δ ∈ (0, 0.5],

V ∗(ρ)

≥ V3(ρ) :=

[
H(ρ)−H([δ, 1− δ])− δ log(M − 1)

Imax(M)

+
log 1−L−1

L−1 − log 1−δ
δ − ξM

Dmax(M)
1{ max

i∈ΩM

ρi≤1−δ} −K ′
3

]+
,

(36)

where K ′
3 is a constant independent of δ and L.4

The next proposition generalizes this lower bound and
is provided as a benchmark for comparison with the lower
bounds derived using dynamic programming techniques.

Proposition 1. Under Assumptions 3 and 5, and for L > 1,
ρ ∈ PL(ΩM ), and arbitrary δ ∈ (0, 1),

V ∗(ρ) ≥


M∑
i=1

ρi

[
(1− δ) log L

K′ log 2L −max
j �=i

log ρi

ρj

]+
D̃i(M) + δ

(
1− 2M(K

′ log 2L
L )δ

ρi

)
− Mξ2M

δ2

]+
,

(37)

where K ′ is a constant independent of δ and L.

D. Analysis: Upper Bounds and Achievability

In this section, we analyze the performance of the pro-
posed heuristics, and provide upper bounds on the expected
total cost achieved by these policies. Let Vπ(ρ) := Eπ [τ ] +
LPeπ denote the expected total cost (32) achieved by policy
π given that the initial belief is ρ.

Theorem 6. Consider a policy π that selects the retire-
declare action at

τ̃1/L = min{t : max
i∈ΩM

ρi(t) ≥ 1− L−1}. (38)

4It can be shown that K ′
3 can be selected independent of M as well if

supM ξM < ∞.
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Suppose policy π at each time t = 0, . . . , τ̃1/L − 1 and
given the posterior vector ρ(t), selects sensing actions in
a way that EJS(ρ(t), π) ≥ α for some α > 0. Under
Assumptions 3 and 5, and for L > 1 and ρ ∈ PL(ΩM ),

Vπ(ρ) ≤ V α(ρ) (39)

:=
H(ρ) + max{log logM, logL}+ 2ξM+2

α
+ 1. (40)

Furthermore, if there exist positive values α and β such that
at each time t < τ̃1/L and given the posterior vector ρ(t),

EJS(ρ(t), π) ≥
{
α if maxi∈ΩM ρi(t) < ρ̃

β otherwise
, (41)

where
ρ̃ := 1− 1

1 + max{logM, logL} , (42)

then the following bound is obtained

Vπ(ρ) ≤ V αβ(ρ) (43)

:=
H(ρ) + max{log logM, log logL}

α
+

logL

β
(44)

+
3× 22ξM+4

αβ
+ 1. (45)

Recall from Section III-D that policy πEJS selects the
retire-declare action at τ̃1/L and selects sensing actions in a
way to maximize the EJS divergence, i.e.,

EJS(ρ, πEJS) = max
a∈AM

EJS(ρ, a). (46)

Theorem 6 together with (46) yields the following:

Corollary 2. Suppose there exist positive values α and β
such that ∀ρ ∈ PL(ΩM ),

max
a∈AM

EJS(ρ, a) ≥
{
α if maxi∈ΩM ρi < ρ̃

β otherwise
. (47)

Under Assumptions 3 and 5, and for L > 1 and ρ ∈
PL(ΩM ),

VπEJS (ρ) ≤
H(ρ) + max{log logM, log logL}

α
(48)

+
logL

β
+

3× 22ξM+4

αβ
+ 1. (49)

Note that the above theorems result in non-trivial upper
bounds if one can find strictly positive values for α and β.
In other words, the above theorems should be interpreted
to lay out a proof methodology. In fact, in Section V,
we use these results to prove the asymptotic optimality of
a low-complexity search algorithm to find an object in a
noisy environment. Next we provide an upper bound for
VπEJS for the general active hypothesis testing problem by
characterizing α and β in (47) and using Corollary 2. For
notational simplicity, let

I0(M) :=

max
λ∈P(AM )

min
i∈ΩM

min
ρ̂∈PL(ΩM )

∑
a∈AM

λaD(qai ‖
∑
j �=i

ρ̂j
1− ρ̂i

qaj ),

(50)
Di(M) :=

max
λ∈P(AM )

min
ρ̂∈PL(ΩM )

∑
a∈AM

λaD(qai ‖
∑
j �=i

ρ̂j
1− ρ̂i

qaj ), ∀i ∈ ΩM .

(51)

Note that for any λ ∈ P(AM ) and ρ ∈ PL(ΩM ),

max
a∈AM

EJS(ρ, a) ≥
∑

a∈AM

λaEJS(ρ, a)

≥ min
ρ̂∈PL(ΩM )

∑
a∈AM

λaEJS(ρ̂, a), (52)

which implies that

max
a∈AM

EJS(ρ, a) ≥ I0(M). (53)

Similarly, we can show that for any λ ∈ P(AM ) and ρ ∈
PL(ΩM ) such that ρi ≥ ρ̃,

max
a∈AM

EJS(ρ, a)

≥
∑

a∈AM

λaEJS(ρ, a)

≥ min
ρ̂∈PL(ΩM )

∑
a∈AM

λaρ̃D(qai ‖
∑
j �=i

ρ̂j
1− ρ̂i

qaj ), (54)

which implies that

max
a∈AM

EJS(ρ, a) ≥ ρ̃Di(M) if ρi ≥ ρ̃. (55)

Corollary 2 together with (53) and (55) provides the
following upper bound on the expected total cost of policy
πEJS ,

VπEJS (ρ) ≤
H(ρ) + max{log logM, log logL}

I0(M)
+

logL

ρ̃ min
i∈ΩM

Di(M)
+

3× 22ξM+4

ρ̃ min
i∈ΩM

Di(M)I0(M)
+ 1.

(56)

Next we consider policy π2, a two-phase policy which was
introduced and analyzed in [15]. Let η0 and ηi, i ∈ ΩM , be
vectors in P(AM ) that achieve the maximum in (50) and
(51), respectively, i.e.,

η0

:= argmax
λ∈P(AM )

min
i∈ΩM

min
ρ̂∈PL(ΩM )

∑
a∈AM

λaD(qai ‖
∑
j �=i

ρ̂j
1− ρ̂i

qaj ),

(57)
ηi

:= argmax
λ∈P(AM )

min
ρ̂∈PL(ΩM )

∑
a∈AM

λaD(qai ‖
∑
j �=i

ρ̂j
1− ρ̂i

qaj ). (58)

Moreover, let η0a and ηia denote elements of η0 and ηi

corresponding to a ∈ AM , respectively. Consider a threshold
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ρ̌, ρ̌ > 1
2 . Markov (randomized) policy π2 is defined as

follows:
• If ρi ≥ 1 − L−1, retire and select Hi as the true

hypothesis;
• If ρi ∈ [ρ̌, 1− L−1), then π2(a|ρ) = ηia, ∀a ∈ AM ;
• If ρi < min{ρ̌, 1 − L−1}, for all i ∈ ΩM , then

π2(a|ρ) = η0a, ∀a ∈ AM .
Next theorem provides an upper bound on the expected

total cost of π2:

Theorem 7 (see [15]). Under Assumptions 3 and 5, and for
L > 1 and any ρ ∈ PL(ΩM ),

Vπ2(ρ) ≤
H(ρ) + ξM +K ′′

2

I0(M)
+

M∑
i=1

ρi
logL

Di(M)
+ 1,

where K ′′
2 is a constant independent of L and M .

The proof of Theorem 7 relies on the (non-Bayesian)
analysis of the conditional expected cost. Following a similar
approach and for large values of L and M , the upper bound
(56) for πEJS can be tightened as follows:

Proposition 2. Under Assumptions 3 and 5, and for L > 1
and ρ ∈ PL(ΩM ),

VπEJS (ρ) ≤
H(ρ) + max{log logM, log logL}

I0(M)
+

M∑
i=1

ρi
logL+

K′′
EJS×22ξM

I0(M)

Di(M)
+ 1,

where K ′′
EJS

is a constant independent of L and M .
Note that an upper bound for the class of sequential adap-

tive policies can be provided by analyzing the performance
of a heuristic two-phase policy πSA which can be described
as follows:

• If ρi ≥ 1 − L−1, retire and select Hi as the true
hypothesis;

• If ρi ∈ [ρ̌, 1− L−1), then πSA(a|ρ) = µia, ∀a ∈ AM ;
• If ρi < min{ρ̌, 1 − L−1}, for all i ∈ ΩM , then

πSA(a|ρ) = µ0a, ∀a ∈ AM ;
where µ0 and µi, i ∈ ΩM , are vectors in P(AM ) that achieve
the maximum in (59) and (60), respectively:

Ĩ0(M) := max
λ∈P(AM)

min
i∈ΩM

min
j �=i

∑
a∈AM

λaD(qai ‖qaj ), (59)

D̃i(M) := max
λ∈P(AM)

min
j �=i

∑
a∈AM

λaD(qai ‖qaj ), ∀i ∈ ΩM .

(60)

The next proposition provides a benchmark for comparison
with πEJS .

Proposition 3. Under Assumptions 3 and 5, and for L > 1,
ρ ∈ PL(ΩM ), and arbitrary ι ∈ (0, 1),

VπSA(ρ) ≤
H(ρ) + logM +K ′′

Ĩ0(M)
(1 + ι)

+

M∑
i=1

ρi
logL

D̃i(M)
(1 + ι) +

(
6M +

M

( ι/2
1+ι)

5( Ĩ0(M)
2ξM

)4

)
×

×
(
L(1− max

j∈ΩM

ρj)

)− ι3

(1+ι)2

Ĩ20(M)

4ξ3
M

,

where K ′′ is a constant independent of L and M .

E. Discussion: Contributions and Prior Work

The problem of active sequential hypothesis testing natu-
rally arises in a broad spectrum of applications such as med-
ical diagnosis [16], cognition [17], sensor management [18],
underwater inspection [19], generalized search [20], group
testing [21], and channel coding with perfect feedback [22].

The most well known instance of our problem is the case
of binary hypothesis testing with passive sensing (M = 2,
K = 1), first studied by Wald [23]. In this instance of the
problem, the optimal action at any given time is provided by a
sequential probability ratio test (SPRT). There are numerous
studies on the generalizations to M > 2 (K = 1) and the
performance of known simple and practical heuristic tests
such as MSPRT [24], [25], [26].

Active hypothesis testing also generalizes another classic
problem in the literature: the comparison of experiments
first introduced by Blackwell [9]. This is a single-shot
version of the active hypothesis testing problem in which
the decision maker can choose one of several (usually two)
actions/experiments to collect a single observation sample
before making the final decision. There have been extensive
studies [9], [27], [28], [10], [29], [30], [31] on comparing the
actions. As we saw in previous sections, applying various
results from [9], [10] in our context of active hypothesis
testing and utilizing a dynamic programming interpretation,
an optimal notion of information utility, i.e., an optimal
measure to quantify the information gained by different
sensing actions, can be derived [32]. Inspired by this view
of the problem, which coincides with that promoted by
DeGroot [33], we provided a set of (uniform) lower bounds
for optimal information utility. Furthermore, two heuristic
policies were developed.

The first attempt to solve Problem-AHT is Chernoff’s
work on active binary composite hypothesis testing [34]
where a heuristic randomized policy was proposed and whose
asymptotic performance was analyzed. More specifically, un-
der a certain technical assumption on uniformly distinguish-
able hypotheses, the proposed heuristic policy is shown to
achieve asymptotic optimality where the notion of asymptotic
optimality [34] denotes the relative tightness of the perfor-
mance upper bound associated with the proposed policy and
the lower bound associated with the optimal policy. Given
the similar setting of the problem, it is important for us to
delve deeper into Chernoff’s work and method of analysis.
To achieve asymptotic optimality, Chernoff proposed the fol-
lowing randomized scheme to select actions: At each time t,
find the most likely true hypothesis, and then select an action
that can discriminate this hypothesis the best from each and
every element in the set of alternative hypothesis. Much
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of the subsequent literature extended this approach [35],
[36], [37], [38], [39], [40], [41]. Chernoff showed that
as L goes to infinity, the relative difference between the
expected total cost achieved by his proposed scheme and the
optimal expected total cost approaches zero; which he termed
as asymptotic optimality.5 One of the main drawbacks of
Chernoff’s asymptotic optimality notion was his neglecting
the complementary role of asymptotic analysis in M . In
particular, the notion of asymptotic optimality in L falls short
in showing the tension between using (asymptotically) large
number of samples to discriminate among a few hypotheses
with (asymptotically) high accuracy or a (asymptotically)
large number of hypotheses with a lower degree of accuracy.
As a result, although the scheme proposed in [34] and its
subsequent extensions [35], [36], [37], [38], [39], [40], [41]
are asymptotically optimal in L, their provable information
acquisition rate is restricted to zero. Intuitively, the rate of
information acquisition under any given heuristic relates to
the ratio between logM and the expected number of samples:
the larger this ratio the faster information is acquired.

To obtain asymptotic characterization of the optimal ex-
pected total cost in a non-zero rate regime, it is important
to propose schemes which scale optimally with M as well.
In his seminal paper [22], Burnashev tackled the primal
(constrained) version of Problem (P) in the context of channel
coding with feedback, and provided lower and upper bounds
on the expected number of samples (or equivalently channel
uses) required to convey one of M uniformly distributed
messages over a discrete memoryless channel (DMC) with
a desired probability of error. The lower bound identified
the dominating terms in both number of messages and
error probability, hence characterized the optimal reliability
function (also known as the error exponent) in addition to
the feedback capacity (which was known to coincide with
the Shannon capacity [42]). In this paper, we generalize6 this
lower bound to the problem of active sequential hypothesis
testing. In addition to a lower bound on an expected number
of samples, Burnashev proposed a coding scheme with two
phases of operation whose performance provides a tight
upper bound (in both number of messages and error proba-
bility). It is interesting to note that the scheme of Chernoff, if
specialized to channel coding with feedback, coincides with
the confirmation (second) phase of Burnashev’s scheme and
is of a repetition code nature. This means that while the
first phase of Burnashev’s scheme is designed to achieve any

5In [34], the objective was to minimize cE[τ ]+Pe and the proposed policy
was shown to be asymptotically optimal as c → 0. It is straightforward to
show that for L = 1

c
, this problem coincides with Problem (P) defined in

this paper. However, we have chosen E[τ ] + LPe as an objective function
for Problem (P) because of its interpretation as the Lagrangian relaxation
of an information acquisition problem in which the objective is to minimize
E[τ ] subject to Pe ≤ ε where ε > 0 denotes the desired probability of error.

6In [43], Burnashev attempted to tackle the problem of active sequential
hypothesis testing by Chernoff [34]. However, the sensing actions in [43]
were allowed to be functions of the true hypothesis, θ, which, in general,
is not observable in the active testing setting [34]. In this sense, [43]
only extends Burnashev’s earlier work [22] on variable-length coding over
a discrete memoryless channel (DMC) with feedback to allow for more
general channels.

information rate up to the (Shannon) capacity of the channel,
Chernoff’s one-phase scheme has a rate of information
acquisition equal to zero. Our upper bounds discussed earlier
are all nspired by Burnashev’s coding scheme,

The above results have all been obtained under an impor-
tant technical assumption: Assumption 2. This assumption is
fairly limiting as it excludes the cases where the observation
kernel has unbounded support. However, in our prior work,
we have showed that this assumption can be significantly
weakened [15].

V. SEARCHING WITH MEASUREMENT-DEPENDENT
NOISE

In this section, we consider a target search problem on a
unit internal where at any given time an agent can choose
a region to probe into for the presence of the target in
that region. The measurements are assumed to be a noisy
indicator of the presence of the target in the search region
the agent probes. Searching with measurement independent
noise is known [44] to be equivalent to the problem of
channel coding over a Binary Symmetric Channel (BSC)
with crossover probability p, where the adaptivity of the
search strategy corresponds to the availability of noiseless
feedback and the targeting rate corresponds to the channel
capacity. It is well known that feedback cannot increase
channel capacity [45] but can increase the reliability of data
transmission [46], [47] with allowing variable time of ter-
mination. Correspondingly [48] demonstrates how to design
an adaptive search algorithm that achieves the best possible
targeting rate and reliability, with the help of the Extrinsic
Jensen-Shannon (EJS) divergence [49], where searching rate
is defined to be the ratio of the logarithm of the search
resolution over the expected number of samples and the
reliability is defined to be the ratio of the logarithm of error
probability over the expected number of samples.

In many practical applications, however, the measurement
noise depends on the size of the region probed. In partic-
ular, the search of a larger region is prone to more noise
than probing smaller regions. In other words, the crossover
probability (false alarm and miss detection) associated with
searching region of size α can be thought of a non-decreasing
function p[α]. In this setting, adaptivity is known to be
essential [3] and can increase not only reliability but also the
targeting rate compared with non-adaptive strategies. More
specifically, the analysis in [3] quantifies the adaptivity gain
in realistic setting when the noise p[α] is decreasing with
the search size α. The achievable adaptive search algorithm
in [3], however, is a rudimentary three-phase search scheme
constructed primarily for analytical/proof purposes. In par-
ticular, the first two phases of the achievable scheme are
non-adaptive and based on a random partitioning of the
search area, and the third phase consists of an ACK/NACK
operation. While this simple hueristics allows for a simple
proof of adaptivity gain and is shown to achieve the asymp-
totically optimal performance, we can achieve this optimal
performance via a truly adaptive and deterministic policy
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with non-asymptoticaly good performance. Furthermore, the
implementation of three-phase search scheme of [3] requires
tuning several parameters which impact the performance
especially in the non-asymptotic regime.

In this section, we proposed a deterministic single-phase
search strategy that is low complexity and is proven to
achieve the best possible targeting rate and reliability under
measurement dependent noise. Practically, unlike the three-
phase scheme in [3], our proposed algorithm is universal and
can be easily implemented at any given resolution. Further-
more, we show, numerically, that the proposed algorithm has
a superior non-asymptotic performance.

A. Problem Setup

The problem setup is similar to that of [3]. Let θ ∈ [0, 1)
be the fixed position of the target, uniformly placed on the
unit interval. We wish to estimate the target position θ. At
time t, an agent may seek the target by choosing (possibly
at random) any measurable query set Qt ⊂ [0, 1) to probe.
Without loss of generality, we will assume throughout that
|Qt| ≤ 1

2 almost surely. Let Xt = 1(θ ∈ Qt) denote the
clean binary signal indicating whether the target is in the
probed region. The agent obtains a corrupted version Yn of
Xn, with noise level that corresponds to the size of the region
Qt. Specifically,

Yt = Xt ⊕ Zt, (61)

where Zt ∼ Bern (p[|Qt|]) and p : (0, 1/2] �→ [0, 1/2) is a
continuous and non-decreasing function.

A search strategy is a causal protocol for determining the
sequence of search region, Qt, t = 1, 2, 3, ..., the stopping
time τ , and estimators θ̂τ of the position. A strategy is said to
be non-adaptive if the choice of the region Qt is independent
of Y t−1 and the stopping time is fixed in advance. Otherwise,
the strategy is said to be adaptive. A strategy is said to have
search resolution δ and error probability ε if for any θ,

P( | θ̂τ − θ | ≤ δ) ≥ 1− ε. (62)

Let τε,δ denote the stopping time that a given search strategy
declares the target location with resolution δ, error probabil-
ity ε. We are interested in characterizing the expected search
time τε,δ.

B. Finite Resolution Search Strategies

Let us divide the unit interval [0, 1] into 1/δ sub-intervals
(referred to as search bins), where 1/δ is an integer. We
consider search strategies that choose the search subset Qt

to coincide with a subset of the search bins. And instead
of declaring a location θ̂, we declare only the index of the
bin {1, 2, ..., 1δ } which is believed to hold the target. Let
iθ denote the bin index that contains the true position of
the target. It is clear that if a finite resolution δ search
strategy satisfies P(̂i = iθ) ≥ 1−ε, then it achieves targeting
resolution δ with reliability ε.

Furthermore, it is sufficient for us to consider strategies
that select the next search region St ⊆ {1, 2, ..., 1δ } based on
the following posterior probability

ρi(t) = P(iθ = i | Ft), i = 1, 2, ..., 1/δ. (63)

C. Prior work

The problem of noisy search with measurement indepen-
dent noise was first introduced in [48], where non-asymptotic
lower bound and (loose) upper bound on E[τε,δ] was derived,
i.e.

log(1/δ)

C(0)
+
log(1/ε)

C1(δ)
+ o

(
log

1

δε

)
≤ E[τε,δ]

≤ log(1/δ)

C(1/2)
+

log(1/ε)

C1(δ)
+ o

(
log

1

δε

)
.

(64)

In [3], an optimal7 family of three-phase adaptive scheme
was shown, for all α > 0, to achieve

E[τε,δ] ≤ log(1/δ)

C(α)
+

log(1/ε)

C1(δ)
+ o

(
log

1

δε

)
, (65)

for δ � α. In particular, each scheme in this class consists of
a first phase, where random collection of bins are searched
over time until the smallest number of bins that hold 1− ε/
2 posterior probability is no more than α/δ. Phase 2 and
3 of the strategy is then searching over these α/δ bins to
ensure that the observation noise is below p[α]. Assuming a
worse case scenario where the observation noise in phase
2 and phase 3 is Bernoulli with flip probability exactly
equal to p[α] (instead of upper-bounded by it), the problem
can be mapped to the problem of channel coding with
feedback, where the two-phase Yamamoto-Itoh [50] scheme
is applied (to the α/δ bins with the target posterior identified
in the first phase). While this three-phase scheme achieves
the theoretical limits of performance, the design of a low
complexity, deterministic, sequential and adaptive searching
scheme remains.

D. Sorted Posterior Matching: overview of the results

In contrast to the three-phase scheme in [3], here we
propose a low complexity single-phase scheme that is easy
to implement and is proven to achieve targeting rate and
reliability arbitrarily close to C(0) and C1(0). The single-
phase scheme we propose here, denoted by sortPM , is
a modification of the Posterior Matching algorithm [51].
In particular, we apply the procedure of the deterministic
Generalized Horstein-Burnashev-Zigangirov Scheme in [49]
on ρ↓(t), selecting

SsortPM
t = {i : ρi(t) ≥ ρ↓k∗(t)}, (66)

where

k∗ = argmin
k

∣∣∣∣∣
k∑

i=1

ρ↓i (t)−
1

2

∣∣∣∣∣ . (67)

7when the noise function p[·] is strictly increasing, the scheme is
significantly better than non-adaptive rate maximization scheme.
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Remark 6. Note that the complexity of sortPM search is
O(1δ log

1
δ ) in each step.

Theorem 8. For any α � δ > 0, the expected search time
of sortPM is bounded by

E[τε,δ] ≤ log(1/δ)

C(α)
+

log(1/ε)

C1(δ)
+ o

(
log

1

δε

)
, (68)

as (δ, ε) → 0

This result shows that we can achieve the best possible
targeting rate and error exponent using a simple single-phase
scheme without the implementation difficulty associated with
choosing the transition parameter α for the three-phase phase
adaptive scheme in [3].

E. Analysis: Upper Bound

The posterior ρ(t), t = 0, 1, 2, ..., forms a Markov chain
since the search set St only depends on ρ(t). However,
it is difficult to analyze the transition probability and the
behaviour of this Markov Chain directly. Similar to [49], we
consider the functional average log-likelihood and exploit the
Extrinsic Jensen-Shannon divergence (EJS) [49] to analyze
our sortPM search algorithm and then give a complete
proof for Theorem 8.

In this subsection, we use Theorem 6 and Corellary 2
for analyzing the random drift of average likelihood from
time 0 with the initial value U(0) up to the first crossing
time ν := min{t : U(t) ≥ log 1

ε} which is closely related
to the expected drift given by EJS. In particular, we can
then establish an upper bound for the expected target time
E[τε,δ] in terms of the predefined error probability ε and
the resolution δ as well as the guaranteed lower bound
on instantenouseEJS. Specifically we have the following
theorem:

Fact 5 (Theorem 1 in [49]). Define

ρ̃ := 1− 1

1 + max{log(1/δ), log(1/ε)} . (69)

For adaptive search strategy with search region St, if

EJS(ρ(t), St) ≥ R ∀t ≥ 0 (70)

and

EJS(ρ(t), St) ≥ ρ̃E ∀t ≥ 0 s.t. max
i

ρi(t) ≥ ρ̃, (71)

we have the expected stopping time associated with error
probability ε and resolution δ bounded by

E[τε,δ] ≤ log(1/δ)

R
+

log(1/ε)

E
+ o

(
log

1

δε

)
(72)

as (δ, ε) → 0.

The proof follows similarly with that of [Theorem 1, [49]].
Furthermore, along with the proof of [Proposition 3, [49],
we can show that EJS(ρ(t), SsortPM

t ) ≥ C(|St|). Straight-
forwardly, we have EJS(ρ(t), SsortPM

t ) ≥ C(1/2) for all
t and EJS(ρ(t), SsortPM

t ) ≥ C1(δ) if maxi ρi(t) ≥ ρ̃.

To prove Theorem 8, however, we will need to compare
EJS(ρ(t), SsortPM

t ) with C(α) for arbitrarily small α for
all t. In other words, the difficulty of proving achievability
lies in the fact that the expected drift EJS(ρ(t), SsortPM

t )
is only larger than C(|St|) but not C(α) for arbitrary α
for all time. Our approach here is to show that by the
operation of sortPM , the search size |St| will shrink in
and spend the majority of time within a region of size α
(Lemma 4). To prove this, we binned the sorted posterior
into multiple bins of size α and consider another averaged
log-likehood function Uα(t) defined upon the size-α bins.
The event {|St| ≤ α} is then guaranteed by {Uα(t) ≥ 0}
whose probability is established via Azuma’s inequality on
the submartingale Uα(t) and the lower bound of its expected
drift (a modified EJS) provided. In the next section, we
provide further the outline of proof.

F. Sketch of the Proof of Theorem 8

To prove that the search strategy sortPM can achieve
C(α) for arbitrary small α, we consider the event that
the SsortPM

t picks up the corresponding search size
|QsortPM

t | ≤ α. This happens if

ρα1 (t) :=

	α/δ
∑
i=1

ρ↓i (t) ≥
1

2
. (73)

Define Et = {ρα1 (t) < 1
2}, and Fn =

⋃∞
t=n Et. Under

event FC
n , we guarantee that after time n the search size of

sortPM is always smaller than α and hence the probability
of crossover noise is limited by p[α]. In other words,

E[τε,δ] =

∫
Ω

τε,δ dP ≤
∞∑
t=n

∫
Et

τε,δ dP+

∫
FC

n

τε,δ dP

=

∞∑
t=n

∫
Et

E[τε,δ | ρ(t)] dP+

∫
FC

n

τε,δ dP

(a)

≤
∞∑
t=n

P(Et)

(
t+

log 1
δ

C(0.5)
+

log 1
ε

C1(δ)
+ o

(
log

1

δε

))

+

∫
FC

n

τε,δ dP

(b)

≤
∞∑
t=n

P(Et)

(
t+

log 1
δ

C(0.5)
+

log 1
ε

C1(δ)
+ o

(
log

1

δε

))

+ n+
log 1

δ

C(α)
+

log 1
ε

C1(δ)
+ o

(
log

1

δε

)
.

(74)
Here (a) follows from the time homogeneity of the Markov
Chain ρ(t) together with Fact 5, written as

E[τε,δ | ρ(t)] ≤ t+
log 1

δ

C(0.5)
+

log 1
ε

C1(δ)
+ o

(
log

1

δε

)
. (75)

Similar arguments can be made for (b),∫
FC

n

τε,δ dP ≤ n+
log 1

δ

C(α)
+

log 1
ε

C1(δ)
+ o

(
log

1

δε

)
. (76)
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Now the problem reduces to finding an appropriate upper-
bound for P(Et), provided in the lemma below.

Lemma 4. Using the search strategy sortPM , we have

P(Et) := P

(
ρα1 (t) <

1

2

)
< kfe

−tE0 ∀t > T0 (77)

for some T0, E0 > 0.

This lemma together with (74) implies that

E[τε,δ] ≤ O(n) +
kf e

−nE0

1− e−E0

(
log 1

δ

C(0.5)
+

log 1
ε

C1(δ)

)

+
log 1

δ

C(α)
+

log 1
ε

C1(δ)
+ o

(
log

1

δε

)
, n > T0.

(78)
Finally letting n = �log log 1

δε� in equation (78), we have
the assertion of the theorem.

VI. BAYESIAN ACTIVE LEARNING WITH
NON-PERSISTENT NOISE

In this section, we consider the problem of noisy Bayesian
active learning where we are given a finite set of functions H,
a sample space X , and a label set L. One of the functions in
H assigns labels to samples in X , and our goal is to identify
this function when the result of a label query on a sample is
corrupted by independent noise. The objective is to declare
one of the functions in H as the true label generating function
with high confidence using as few label queries as possible,
by selecting the queries adaptively and in a strategic manner.

A special case of the problem, first considered by [52],
arises when the label set is binary and the natural sampling
strategy for Bayesian active learning becomes closely related
to Generalized Binary Search (GBS). In the binary label
setting, GBS queries the label of a sample x for which
the size of the subsets of functions that label x as +1 and
−1 respectively, are as balanced as possible. A variant of
GBS is Modified Soft-Decision Generalized Binary Search
(MSGBS), which was introduced by [52] to address the case
when the observed labels may be noisy. [52] analyzes the per-
formance of MSGBS, under a symmetric and non-persistent
noise model which flips the labels randomly, and shows
that the (fixed) number of samples required to identify the
correct function with probability of error satisfying Pe ≤ ε

is logM+log 1
ε

λ , where M is the number of functions in the
class H, and λ is a parameter which depends on the structure
of the function class, the sample space, and the noise rate.
The mainfirst contribution of this paper is to generalize the
above problem to the case of general (non-binary) label set
with general (and potentially non-symmetric) non-persistent
observation noise.

By allowing for the number of samples collected to be
determined in a sequential manner (according to a random
stopping time as a function of past observations), we draw
a parallel between active sequential hypothesis testing [15]
and Bayesian active learning. In active sequential hypothesis
testing, we are given a set of M hypotheses, and a set of
actions; each action, conditioned on the true hypothesis, has

a certain probability of yielding an outcome. We observe that
Bayesian active learning is a special case of active hypothesis
testing, where the hypotheses map to functions, actions map
to samples, and the outcomes map to noisy observation
of labels. This view of the problem allows for a natural
extension of the model of [52] to the non-binary Bayesian
active learning setting, where the label noise might be label
dependent and asymmetric. Relying on this connection, we
derive a universal lower bound on the expected number of
samples required to identify the true hypothesis among M
with reliability ε as a function of noise model parameters.
Furthermore, we can take advantage of the connection be-
tween Bayesian learning and active sequential hypothesis
testing to proposed an active sequential hypothesis test,
MaxEJS, that, at each step, selects the action that maximizes
the EJS divergence. In special cases where H is locally
identifiable and sample rich, we provide upper bounds on
the query complexity of MaxEJS. These bounds establish the
asymptotic optimality of MaxEJS for sample rich function
class. Also, similar optimality bounds are shown when H
is specialized further to the class of threshold binary valued
functions.

A. Problem Setup

In this section, we provide the mathematical description
of the problem of Bayesian active learning.

Problem-NBAL [Noisy Bayesian Active Learning]
In the Bayesian active learning problem, we are given
a sample space X , a finite label set L, and a finite
observation space Y . We are also given a set H =
{h1, h2, . . . , hM} of M distinct functions, where each
hi : X → L maps elements in the sample space X to
the label set L. We assume that one of the functions in
H, denoted by hθ , produces the correct labeling on X .
The decision maker is allowed to query samples from X .
Querying a sample x generates an observation in y ∈ Y
whose distribution is a given function of the true label as
determined by the function hθ . More specifically, if hθ

is the true underlying function and hence l = hθ(x) is
the true label of sample x, then the result of a query on
x is a Y-valued random variable with probability mass
function fl(·). We assume that {fl(·)}l∈L are fixed and
known, and observations are conditionally independent
over time.8

The goal of the decision maker is to determine the
identity of the function in H that generates the true
labels by an adaptive sequential query of a small number
of samples. We assume that the decision maker does not
have any extra prior knowledge on the identity of the
true function; in other words, it begins with a uniform
prior over H. Let τ be the stopping time at which the
decision maker retires and declares the label generating

8For notational convenience, we present our results in this paper for a
finite observation space Y . However, the results could be easily extended
to general Y where {fl(·)}l∈L are density functions with respect to some
σ-finite measure ν.
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function hθ̂. Furthermore, let Pe = P (θ̂ �= θ) where
θ is the index of the true function. In Bayesian active
learning, the objective is to design a strategy for the
decision maker for querying samples in X such that,
for any given ε > 0, we have

minimize E [τ ] subject to Pe ≤ ε. (79)

Here the minimization is taken over the choice of
the stopping time τ and the learning strategy and the
expectation is taken with respect to the observation
distribution as well as the Bayesian uniform prior on
the true function in H.

Let the decision maker’s posterior belief about each pos-
sible function index i ∈ Ω, updated after each sample query
and observation for t = 0, 1, . . . , τ , be

ρi(t) := P ({θ = i}|Xt−1, Y t−1), (80)

where

X−1 := ∅, Xt−1 := [X(0), X(1), . . . , X(t− 1)] ∀t ≥ 1,

Y −1 := ∅, Y t−1 := [Y (0), Y (1), . . . , Y (t− 1)] ∀t ≥ 1.

We note that the dynamics of the information state, i.e.,
the posterior, follows Bayes’ rule. But before we make this
more precise, let us consider an alternative representation of
querying a sample x ∈ X :

Definition 3. A sample x ∈ X generates a |L|-partition
Ξx := {Hx

l }l∈L of the function class, where Hx
l = {h ∈

H : h(x) = l}, i.e., H = ∪l∈LHx
l .

This view allows us to characterize the observation distri-
bution given the belief vector ρ and queried sample x as

fρ
x (y) :=

∑
i∈Ω

ρifhi(x)(y) =
∑
l∈L

fl(y)
∑

i:hi∈Hx
l

ρi. (81)

Therefore, given the belief vector ρ(t), querying sample
X(t) = x and observing (noisy) label Y (t) = y results in a
refinement of the posterior according to the Bayes’ rule, i.e.,

ρ(t+ 1) = Φx(ρ(t), y) (82)

where

Φx(ρ, y) :=

[
ρ1

fh1(x)(y)

fρ
x (y)

, . . . , ρM
fhM(x)(y)

fρ
x (y)

]
. (83)

As a consequence of a connection between Bayesian
active learning and the more general problem of information
acquisition considered in the earlier chapters, we will analyze
the problem via Extrinsic Jensen–Shannon divergence [53]
which in this case can be written as:

EJS(ρ, x) :=
∑
l∈L

∑
i:hi∈Hx

l

ρiD

(
fl

∥∥∥∥ fρ
x − ρifl
1− ρi

)
. (84)

B. Analysis: Lower Bound

We now provide the first set of results – lower bounds on
the optimal number of queries to identify the true function
with high accuracy. Note that we expect the query complexity
of our problem to depend on the characterizations of the
discrete memoryless communication channel (DMC) which
corrupts the true label’s observations. This is a DMC with
input alphabet set L, output alphabet set Y , and a collection
of conditional probabilities fl(·), l ∈ L. We begin with a few
assumptions on this channel.

Assumption 3. C := min
g∈P(Y)

max
l∈L

D(fl‖g) > 0.

Assumption 4. C1 := max
k,l∈L

D(fk‖fl) < ∞.

Assumption 5. C2 := max
k,l∈L

sup
y∈Y

fk(y)
fl(y)

< ∞.

Note that C defined above is nothing but the Shannon
capacity of the DMC with the collection of conditional
probabilities P (Y = y|L = l) = fl(y), l ∈ L (See [54,
Theorem 13.1.1]). In particular, the minimum is achieved by
g∗, a convex combination of {fl}l∈L, i.e., g∗ =

∑
l∈L π�

l fl
where {π�

l }l∈L is referred to as the capacity-achieving input
distribution and has the property that for each k ∈ L, if
π�
k > 0, then D(fk‖g∗) = C (See [55, Theorem 4.5.1]).

If Assumption 3 does not hold, that is if C = 0, the label
queries will be completely noisy and no information can be
retrieved from the label queries regarding the true function.
In this sense, Assumption 3 is a necessary condition that is
required for Problem (P) to have a meaningful solution.

Parameter C1 emerges as an important quantity in the
problem of variable-length coding with feedback: It denotes
the maximum exponential decay rate of the error probability
[22]. It is straight forward to show that C ≤ C1 and hence,
Assumptions 3 and 4 imply that also C1 > 0 and C < ∞.

Since, in general, C1 ≤ logC2, Assumption 4 is redundant
with respect to Assumption 5. For observation distributions
with finite support, i.e., when |Y| < ∞, Assumption 5
ensures that the conditional distributions fl, l ∈ L, are
absolutely continuous with respect to each other. Thus for
observation distributions with finite support, Assumption 5
is a necessary and sufficient condition to ensure Assump-
tion 4. On the other hand, for observation distributions with
unbounded support, Assumption 5, which is stronger than
Assumption 4, is a technical assumption made for ease of
analysis, and will help us construct strong non-asymptotic
bounds in closed form.

While the (non-asymptotic) bounds and analysis in this
paper are all obtained under Assumptions 3 and 5, we have
chosen to separately state Assumptions 4 and 5 in order to
point out that it is possible to relax Assumption 5. More
specifically, it is shown in [15] that at the cost of increasing
notation, more complicated analysis, and loosening the non-
asymptotic bounds, it is possible to relax Assumption 5 and
obtain similar asymptotic characterizations only under As-
sumption 3 and a slightly stronger variant of Assumption 4.
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The following lower bound on the minimum expected
number of samples required to achieve Pe ≤ ε relies on
dynamic programming methods similar to those used in the
proof of Theorem 4. This lower bound is similar to [43,
Theorem 1], [56, Theorem 1], and [57, Theorem 6].

Theorem 9. Consider Problem (P) under Assumptions 3
and 5.

E[τ∗ε ] ≥

 (1− 5

log 4
ε

− ε
2 log

4
ε ) logM − 8C2

log 4
ε

− 4

C

+
log 1−ε

ε − 2 log log 4
ε − logC2 − 1

C1



+

.

(85)

C. Analysis: Upper Bound

Similar to our analysis in Sections IV-D and V-E, we first
upper bound the query complexity in terms of instantenous
lower bound on EJS:

Theorem 10. Consider Problem (P) under Assumptions 3
and 5. Define α := min

ρ∈P(Ω)
max
x∈X

EJS(ρ, x) which implies

that at any given belief vector ρ ∈ P(Ω), it is possible to
find a sample x ∈ X satisfying EJS(ρ, x) ≥ α. If α > 0,
then

E[τ∗ε ] ≤
logM +max{log logM, log 1

ε}+ 4C2

α
. (86)

Also define β := min
ρ∈PM

ε (Ω)
max
x∈X

EJS(ρ, x). If β > α, then

the following bound is obtained

E[τ∗ε ] ≤
logM +max{log logM, log log 1

ε}
α

+
log 1

ε

β

+
3(4C2)

2

αβ
. (87)

Next we look at a specific and important function class,
termed as locally identifiable and provide nontrivial char-
acterization of α and β, hence, demonstrating the relative
looseness/tightness of the upper bounds.

Before we proceed, we provide the following definitions
which will allow us to generalize the notion of 1-neighborly,
first suggested by [52]; then for this general class, we
will obtain non-trivial α and β as defined in Theorem 10.
Consider the representation of a pair of samples x and x′ in
terms of their partitioning of the functions:

Definition 4. A pair of samples x, x′ ∈ X partition the
function class H in an agreement set Ax,x′ := {h ∈ H :
h(x) = h(x′)} and a disagreement set ∆x,x′ := {h ∈ H :
h(x) �= h(x′)}.

Definition 5. A class of functions H is referred to as locally
identifiable if for any hi ∈ H, there exist samples x, x′ ∈ X
and labels l, l′ ∈ L such that either of the following be true
(i) hi ∈ ∆x,x′ ∩Hx

l ∩Hx′
l′ and H−{hi} = Ax,x′ ∪ (Hx

l′ ∩
Hx′

l ), or

(ii) {hi} = Ax,x′∩Hx
l and for all k �= l, l′, Hx

k ∪Hx′
k = ∅.

In essence, the locally identifiable condition implies that
for any function hi ∈ H, there are (at least) two samples
x and x′ in X and two labels l and l′ using which hi can
be distinguished from all other functions. In the binary case,
this condition is equivalent to H having teaching dimension
of at most 2 [58]. However, for general L, this condition
allows for the teaching sets to be tested against two and only
two labels l and l′. As we will see in Section VI-C1, local
identifiability is a condition that is satisfied by a number of
natural function classes.

The performance of cEJS when the labeling function class
is locally identifiable is characterized by the capacity of the
(sub)channel with two inputs l, l′ ∈ L denoted by Cll′ , i.e.,

Cll′ := min
g∈P(Y)

max{D(fl‖g), D(fl′‖g)}. (88)

Also define

Cmin := min
l,l′∈L,l �=l′

min

{
Cll′ , D

(
fl′

∥∥∥∥12fl + 1

2
fl′

)}
.

(89)

Proposition 4. When function class H is locally identifiable,
α ≥ 1

MCmin and β ≥ ρ̃Cmin. More precisely, for every belief
vector ρ, there exists an x ∈ X such that

EJS(ρ, x) ≥
{

1
MCmin if ρ /∈ P

M
ε (Ω)

ρ̃Cmin otherwise
. (90)

The following corollary provides an upper bound on the
expected number of sample queries.

Corollary 3. Consider Problem (P) under Assumptions 3
and 5. If the function class H is locally identifiable, then

E[τ∗ε ] ≤
M(logM +max{log logM, log log 1

ε})
Cmin

+
log 1

ε

ρ̃Cmin

+
3M(4C2)

2

ρ̃C2
min

. (91)

Next, we define a subclass of the locally identifiable
function class, and show that for this function class, α and
β can be selected to match the denominators in the lower
bound in (85).

Definition 6. We refer to the function class H as R(H)-
sample-rich for R(H) = ∪x∈XΞx. In the special case where
R(H) includes all (|L|M − |L|) non-trivial |L|-partitions of
H, we simply refer to H as sample-rich.

Proposition 5. When function class H is sample-rich, α ≥ C
and β ≥ ρ̃C1.

Proof: To prove Proposition 5, we will show that for all
belief vectors ρ,

max
x∈X

EJS(ρ, x) ≥ C,

and furthermore,

max
x∈X

EJS(ρ, x) ≥ max
i∈Ω

ρiC1.
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Recall from Subsection VI-B that

C = min
g∈P(Y)

max
l∈L

D(fl‖g), (92)

and the minimum is achieved by g∗ =
∑

l∈L π�
l fl where π�

is the capacity achieving input distribution, i.e.,

D

(
fk

∥∥∥∑
l∈L

π�
l fl

)
= C for any k ∈ L such that π�

k > 0.

(93)

By definition of the sample-rich function class, for each
v := [v1, . . . , vM ] ∈ LM , there exists a sample in
X , say xv, that satisfies h(xv) = v, where h(x) :=
[h1(x), h2(x), . . . , hM (x)]. Let

λ�
v =

M∏
i=1

π�
vi .

Note that
∑

v∈LM λ�
v = 1. Moreover, for any i, j ∈ Ω, i �= j,∑

v∈LM : vi=k

λ�
v = π�

k,
∑

v∈LM : vi=k,vj=l

λ�
v = π�

kπ
�
l .

Using weights {λ�
v}v∈LM and taking average over all v ∈

LM , we obtain

max
x∈X

EJS(ρ, x)

≥
∑
v

λ�
vEJS(ρ, xv)

=
∑
v

λ�
v

M∑
i=1

ρiD

(
fhi(xv)

∥∥∑
j �=i

ρj
1− ρi

fhj(xv)

)

=

M∑
i=1

ρi
∑
k∈L

π�
k

∑
v : vi=k

λ�
v

π�
k

D

(
fk
∥∥∑

j �=i

ρj
1− ρi

fvj

)

(a)

≥
M∑
i=1

ρi
∑
k∈L

π�
kD

(
fk
∥∥∑

j �=i

ρj
1− ρi

∑
v : vi=k

λ�
v

π�
k

fvj

)

=

M∑
i=1

ρi
∑
k∈L

π�
kD

(
fk
∥∥∑

j �=i

ρj
1− ρi

∑
l∈L

∑
v : vi=k,vj=l

λ�
v

π�
k

fl

)

=
M∑
i=1

ρi
∑
k∈L

π�
kD

(
fk
∥∥∑

l∈L
π�
l fl

)

(b)
=

M∑
i=1

ρiC

= C,

where (a) follows from Jensen’s inequality and (b) follows
from (93).

Let î = argmax
i∈Ω

ρi. Let k, l ∈ L be the labels satisfying

D(fk‖fl) = C1. By definition of the sample-rich function
class, there exists a sample xî ∈ X that satisfies hî(xî) = k
and hj(xî) = l for all j �= î. We have

max
x∈X

EJS(ρ, x) ≥ EJS(ρ, xî)

≥ ρîD

(
fhî(xî)

∥∥∥∑
j �=î

ρj
1− ρî

fhj(xî)

)

= max
i∈Ω

ρiC1.

As a simple corollary,

Corollary 4. Consider Problem (P) under Assumptions 3
and 5. If the function class H is sample-rich,

E[τ∗ε ] ≤
logM +max{log logM, log log 1

ε}
C

+
log 1

ε

ρ̃C1

+
48C2

2

ρ̃CC1
. (94)

The above results show that for sample-rich function
classes, the lower and upper bounds are tight (their dominant
terms in both ε and M match).

The above results generalize the finding of [52] to a multi-
label Bayesian learning with non-binary and asymmetric
noise case. However, to make this comparison precise, we
will dedicate Section VI-C1 to specialize our general results
above to the noisy generalized binary search of [52].

1) Special Case: Noisy Generalized Binary Search: We
next compare our work with existing results. Since the only
study of similar nature is that of noisy generalized binary
search [52], we consider an application of our main re-
sults to noisy generalized binary search among 1-neighborly
functions, first introduced in [52]. This is a special case
of our problem where functions are binary-valued, i.e.,
L = {−1,+1}, the observation space Y = {−1,+1}, and
observation distributions are of the following form:

fl(y) =

{
1− p if y = l
p if y = −l

,

for some p ∈ (0, 1/2). In other words, for any sample x, if hi

is the true function, then the label hi(x) is observed through
a binary symmetric channel with crossover probability p.

For the case of noisy generalized binary search, C, C1,
and C2 defined in Subsection VI-B can be further simplified
to

C := 1 + p log p+ (1− p) log(1− p),

C1 := p log
p

1− p
+ (1− p) log

1− p

p
,

C2 :=
1− p

p
.

In order to emphasize the dependence of C, C1, and C2 on
the Bernoulli parameter p (corresponding to the observation
noise), we denote them by C(p), C1(p), and C2(p) respec-
tively. Note that from Jensen’s inequality, C1(p) ≥ 2C(p).

Next we define a class of 1-neighborly functions first
defined in [52, Definition 2].

Definition 7. Two samples x, x′ are said to be 1-neighbor if
only a single function (and its complement, if it also belongs
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to H) outputs a different value on x and x′. A class of binary-
valued functions H is referred to as 1-neighborly if the 1-
neighborhood graph of X is connected, i.e., for every pair of
samples in X there exists a sequence of 1-neighbor samples
that begins at one of the pair and ends with the other.

It is simple to see that the class of 1-neighborly functions is
a subset of binary-valued locally identifiable function class.
(Remember that in the binary case, the locally identifiable
condition is equivalent to H having teaching dimension of
at most 2, i.e., any function hi ∈ H can be uniquely identified
using one or at most two samples from X ).

This implies the following baseline bound:

Corollary 5. When function class H is 1-neighborly, we have
α ≥ 1

MC(p) and β ≥ ρ̃C(p).

Remark 7. The statement of Corollary 5 continues to hold
for any function class H which has teaching dimension of at
most 2. Although this class of functions slightly generalizes
the 1-neighborly class, in this section we focus on the class
of 1-neighborly functions and its specific subclasses in order
to allow for comparison with previous studies [52].

In comparison, [52] provides two sample query strategies,
NGBS and MSGBS, whose performance (upper bound)
depends strongly on the properties of the function class at
hand.

Let n0 denote the number of queries made by GBS to
determine hθ in the noiseless setting. The number of queries
required by NGBS to attain Pe ≤ ε is upper bounded by

n0(log n0 + log 1
ε )

(12 − p)2
. (95)

Let A denote the smallest partition of sample space X ,
i.e., X = ∪A∈AA, such that for every A ∈ A and h ∈ H,
the value of h(x) is constant for all x ∈ A; and denote this
value by h(A). Furthermore, let

c∗ := min
P∈P(A)

max
h∈H

∣∣∣∣∣
∑
A∈A

h(A)P (A)

∣∣∣∣∣ . (96)

For a 1-neighborly function class of size M , the following
upper bound for n0 is obtained9

n0 ≤
⌈

logM

− log
(
max

{
1+c∗
2 , 2

3

})
⌉
. (97)

On the other hand, under MSGBS, the number of queries
required to ensure that Pe ≤ ε for a 1-neighborly function
class of size M is upper bounded by

logM + log 1
ε

min{2(1− c∗), 1}λ(p) , (98)

9In general, the GBS algorithm is able to determine the true function with
label complexity at most �logM� times the extended teaching dimension
[59]. Moreover, in the case of 1-neighborly classes, [60, Lemma 8.6] has
shown that the extended teaching dimension is dominated by the two
constant classifiers.

where

λ(p) := max
p′∈(p,1/2)

log e

4

(
1− p′(1− p)

1− p′
− (1− p′)p

p′

)
.

(99)

Note that c∗ (as well as n0) in general depends on the
function class H. Since this dependence is implicit and
hard to characterize in closed form for general function
class H, a direct comparison between (98) (or (95)) and
(91) is not possible. As a result, next we focus on special
cases of function classes studied in [52] for which a precise
characterization of the achievable upper bound is available.
Consequently, we next define two important subclasses of
1-neighborly binary-valued functions: 1) Disjoint class HD;
2) Threshold class HT . We further specialize α and β for
these classes.

Definition 8. Let ei, i ∈ Ω, represent a vector of size M
whose ith element is +1 and all other elements are −1. A
collection of functions H is referred to as disjoint interval
class if ∪x∈X {h(x)} = ∪i∈Ω{ei} ⊂ {−1,+1}M , where
h(x) = [h1(x), h2(x), . . . , hM (x)]. In other words, for any
sample x ∈ X , only one function in H takes value +1 and
all other functions take value −1.

Definition 9. Let ui, i ∈ Ω, represent a vector of size M
whose first i elements are −1 and all other elements are +1.
A collection of functions H is referred to as threshold class
if ∪x∈X {h(x)} = ∪i∈Ω{ui} ⊂ {−1,+1}M .

Fact 6 (see [20]). For the disjoint interval class HD , c∗ =
1 − 2

M and n0 ≤ M . For the threshold function class HT ,

c∗ = 0 and n0 ≤
⌈
logM
log 3

2

⌉
≤ 2 logM . For the sample-rich

function class HR, c∗ = 0 and n0 ≤
⌈
logM
log 3

2

⌉
≤ 2 logM .

We are now ready to contrast these results with our
findings. In particular, we have

Proposition 6. For the disjoint interval class HD, α ≥
1
MC1(p) and β ≥ ρ̃C1(p). For the threshold function class
HT , α ≥ C(p) and β ≥ C(p). For the sample-rich function
class HR, α ≥ C(p) and β ≥ ρ̃C1(p).

D. Comparison to Known Results

In this section, we compare the performance of cEJS to
that of NGBS and MSGBS policies proposed in [20].

Table I summarizes our results and specializes the upper
bounds in [20] and lists the number of samples required by
the policies NGBS, MSGBS, and cEJS to attain Pe ≤ ε.
Furthermore, these bounds together with the lower bound
provide a sense as the relative tightness of the bounds for
small ε and/or large M .10

Recall that policies NGBS and MSGBS are non-sequential
in the sense that they stop after a fixed number of samples,
regardless of the probability of error. The numbers shown
in Table I are the number of samples that these policies

10The term o(1) in the bounds goes to zero as ε → 0 or M → ∞. See
[2] for more details.
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TABLE I
PERFORMANCE COMPARISON OF NGBS, MSGBS, AND cEJS ON DIFFERENT FUNCTION CLASSES.

Function class NGBS MSGBS cEJS

Disjoint HD
M(logM+log 1

ε
)

( 1
2
−p)2

M(logM+log 1
ε
)

4λ(p)

(
M logM
C1(p)

+
log 1

ε
C1(p)

)
(1 + o(1))

Threshold HT
2 logM(log logM+log 1

ε
+1)

( 1
2
−p)2

logM+log 1
ε

λ(p)

(
logM
C(p)

+
log 1

ε
C(p)

)
(1 + o(1))

Sample-rich HR
2 logM(log logM+log 1

ε
+1)

( 1
2
−p)2

logM+log 1
ε

λ(p)

(
logM
C(p)

+
log 1

ε
C1(p)

)
(1 + o(1))

Lower Bound on the number of samples needed ≥
(

logM
C(p)

+
log 1

ε
C1(p)

)
(1− o(1))

require to achieve Pe ≤ ε. Policy cEJS is sequential and
Table I shows the expected number of samples required by
this policy to achieve Pe ≤ ε.

Finally, to provide a comparison between the obtained
bounds, in asymptotic regime, Fig. 4 compares the denom-
inators of the upper bounds given in Table I. Note that our
upper bound provides improvement over those corresponding
to NGBS and MSGBS. Particularly, the gap between the
bounds is very significant for small values of the Bernoulli
parameter p and for large values of 1

ε and M .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0
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14

 

 

p

C1(p)

C(p)

( 1
2 − p)2

λ(p)

Fig. 4. Comparison of C(p), C1(p), ( 12 −p)2, and λ(p), for p ∈ (0, 1/2).

VII. DISCUSSION AND FUTURE WORK

This paper focuses on the problem of information acqui-
sition and utilization where a decision maker dynamically
refines his/her belief about stochastically time-varying pa-
rameters in order to utilize a system of interest as efficiently
as possible. A new theoretical framework for stochastic learn-
ing and decision-making in such a setting termed Information
Acquisition and Utilization Problems was proposed. IAUP
is a special case of partially observable Markov decision
problems (POMDP) with several unique properties, with the
most significant one is the independence of the underlying
stochastic process describing the time-varying parameters
of interest and the decision maker’s selection of of the
acquisition and utilization actions.

Motivated by a synthesis of the prior works on active
hypothesis testing, noisy dynamic search, and noisy Bayesian
active learning, the IAUP framework borrows from diverse

areas of research from statistics, information theory, and
stochastic control. This framework, naturally, motivates a set
ongoing and future research questions both in the domain of
algorithm design as well as analytic/tight performance lower
bounds on the minimum feasible cost.
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APPENDIX

The main building block of our analysis is the following
concentration inequality established in [2].

Fact 7 (Lemma 4.7.4 in [2]). Assume that the sequence
{ξ(t)}, t = 0, 1, 2, . . . forms a submartingale with respect
to a filtration {F(t)} and positive constants K1, K2, and
K3:

E[ξ(t + 1)|F(t)] ≥ ξ(t) +K1 if ξ(t) < 0,

E[ξ(t + 1)|F(t)] ≥ ξ(t) +K2 if ξ(t) ≥ 0,

|ξ(t+ 1)− ξ(t)| ≤ K3 if max{ξ(t+ 1), ξ(t)} ≥ 0.

Consider the stopping time υ = min{t : ξ(t) ≥ B}, B > 0.
Then we have the inequality

E[υ] ≤ B − ξ(0)

K2
+ ξ(0)1{ξ(0)<0}

(
1

K2
− 1

K1

)
+

3K2
3

K1K2
.
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