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Searching With Measurement Dependent Noise
Yonatan Kaspi , Ofer Shayevitz , and Tara Javidi

Abstract— Consider a target moving at a constant velocity on
a unit-circumference circle, starting at an arbitrary location.
To acquire the target, any region of the circle can be probed
to obtain a noisy measurement of the target’s presence, where
the noise level increases with the size of the probed region.
We are interested in the expected time required to find the
target to within some given resolution and error probability.
For a known velocity and a given reliability, we provide an
asymptotical characterization of the optimal tradeoff between
time and resolution. Considering an asymptotically diminishing
error probability, we derive the maximal targeting rate, and show
that in contrast to the well-studied case of constant measurement
noise, measurement dependent noise incurs a multiplicative gap
in the maximal targeting rate between adaptive and non-adaptive
search strategies. Moreover, for all rates below this maximal
rate, our adaptive strategy attains the optimal rate-reliability
tradeoff. We further show that accounting for a target moving
at an unknown fixed velocity, the optimal non-adaptive search
strategy incurs a factor of at least two in the maximal targeting
rate.

Index Terms— Search, noisy search, feedback information
theory, error exponents.

I. INTRODUCTION

SUPPOSE a point target is arbitrarily placed on the unit-
circumference circle. The target then proceeds to move at

some constant, but possibly unknown velocity v. An agent
is interested in determining the position of the target and
its velocity to within some given resolution δ, with an error
probability at most ε, as quickly as possible. To that end,
the agent can probe any region of his choosing (contigu-
ous or non-contiguous) on the circle for the presence of
the target, say once per second. The binary outcome of the
probing (hit/miss) is observed by the agent through a noisy
memoryless observation channel. The agent’s strategy can be
either adaptive or non-adaptive; in the former case, the probed
regions can depend on past observations while in the latter case
the regions are set in advance. While adaptive strategies seem
natural in a search setting, non-adaptive strategies are also
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of much interest; such strategies can be executed in parallel
and therefore take significantly less time (but not less queries)
than their adaptive counterparts. Our goal is to characterize
the relation between ε, δ, and the average sample complexity,
which is the expected time E(τ ) until the agent’s goal is met,
for both adaptive and non-adaptive search strategies.

Our model is unique in allowing the observation channel
to depend not only on whether the target was hit or missed,
but also on the size of the probed region, where the obser-
vation channel generally becomes “noisier” as the size of the
probed region increases. For example, the output channel can
be a binary symmetric channel whose crossover probability
increases as a function of the probed region size, or a binary
input, additive Gaussian channel where the noise mean and
variance depend on whether the target was hit or missed,
as well as on the size of the probed region. This model
is practically motivated if one imagines that the circle is
densely covered by many small sensors; probing a region then
corresponds to activating the relevant sensors and obtaining
a measurement that is a function of the sum of the noisy
signals from these sensors, hence the more sensors the higher
the overall noise level. In fact, this model fits many practical
search scenarios in which the choice of the specific physical
mechanism with which one probes affects the quality and
the amount of the data that is being gathered. For example,
increasing the sensitivity/resolution of the acquiring device
allows for better handling of noise, but at the same time
increases the amount of data and hence the processing time
to find the target. As a example, suppose we are searching
for a small target in a vast area of the ocean (e.g., a life
boat or debris) using satellite imagery. To cover such a vast
area, we may choose to use relatively few images of large
areas, or alternatively many “zoomed in” images of smaller
areas. Compared to the zoomed-in images, the images covering
large areas will have many artifacts that might look like the
object being sought (e.g., clouds, breaking waves, unrelated
debris etc.) and will therefore tend to be generally noisier than
the zoomed-in images. On the other hand, acquiring enough
zoomed-in images to cover a vast area can take too long to
be practically feasible. There are many more such cases where
the noise, accuracy and amount of required processing depend
on the choice of the probing mechanism; examples include
microphone sensitivity in a microphone array, ISO setting in
digital imagery, biometric readings, biological tests (e.g., blood
tests), DNA sequencing, radio astronomy, etc.

When the observation channel is noiseless and the target
is stationary, the optimal adaptive search algorithm is the
bisection search, where at each stage we probe half of the
region where the target is already known to be, and the next
phase zooms in on the correct half. For a resolution δ, one
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needs no more than �log 1
δ � queries to find the target. It is easy

to show (see also the discussion that follows Theorem 1) that
a non-adaptive search strategy can return the correct location
with the same number of queries. Both these adaptive and
non-adaptive strategies can be easily modified to find targets
with known velocities. However, the classical bisection search
algorithm fails completely when noise is present, since once a
wrong region is selected as containing the target, the correct
location will never be found. Dealing with noise in search
problems has been an active research topic for many years,
and some attention has been given to the fundamental limits
of searching with noise from an information theoretic per-
spective. However, previous works focused only on stationary
targets and noise models that do not depend on the search
region size (measurement independent noise). We now survey
some relevant literature.

A. Related Work

Noisy search problems were first introduced by Rényi [1]
in the context of a two-player “20 questions game with
lies”, in which the first player thinks of a number in some
given range while the second player needs to guess this
number by asking questions that have binary answers. Renyi
considered the setting where the second player is known to lie
with some given probability. A variation of Renyi’s problem
has been independently proposed by Ulam [2] (commonly
known as Ulam’s game) where in Ulam’s setting the second
player can lie adversarially, but is limited to some given
number of lies. Ulam’s setting and some extensions that
impose various restrictions on the noise sequence have been
extensively investigated in the last few decades, see [3] and
references therein. Ulam’s game and its variations can also be
thought of (as further discussed below) as a communication
problem over a channel with noiseless feedback; this angle
has been extensively studied in Berlekamp’s remarkable PhD
dissertation [4].

In a classical work that is closer to our setting,
Burnashev and Zigangirov [5] were the first to study a con-
tinuous search problem for a stationary target on the unit
interval, from an information theoretic perspective. In their
model, an agent gives the system a point on the unit interval
and receives a binary answer that indicates whether the target
is to the left or to the right of the given point. This binary
answer might be incorrect with probability p, where p is fixed
and known (measurement independent). It is not difficult to
observe (see e.g. [5]) that this search problem is equivalent
to the problem of channel coding with noiseless feedback
over a Binary Symmetric Channel (BSC) with crossover
probability p, where the message corresponds to the target,
the number of messages pertains to inverse of the resolution,
and the channel noise plays the role of measurement noise;
the existence of noiseless feedback pertains to the fact that
the agent may use past measurements to adapt his probing
strategy. The adaptive scheme used in [5] is based on a
quantization of the Horstein scheme for communication over
a BSC with crossover probability p and noiseless instanta-
neous feedback [6], which is a generalization of the clean

bisection search to the noisy case. Roughly speaking, at each
instance, this scheme queries the point that equally bisects the
posterior of the target location given the past observations.
The optimality of the Horstein scheme for the communication
problem was later established by Shayevitz and Feder [7]–[9],
who also showed it to be an instance of the more general
posterior matching scheme. Unaware of this sequence of
works, Waeber and Henderson [10] later showed that the
Horstein scheme for the BSC converges at a geometric rate.
Their result is subsumed by the earlier posterior matching
work of Shayevitz and Feder [7]–[9], who also gave the exact
geometric rate (given by the channel capacity) and proved
a more general result that holds for essentially any discrete
memoryless channel.

In other related work, Coleman [11] provided a stochas-
tic control point of view for posterior matching. Ma and
Coleman [12] leveraged this approach to generalize posterior
matching to higher dimensions. A similar stochastic control
perspective was later taken by Jedynak et al. [13] to find the
optimal adaptive search strategy for a target in R

n under the
entropy cost constraint. Tsiligkaridis et al. [14] extended this
work to include a multi-user collaborative scenario. It should
be noted that the entropy cost constraint is much weaker
and significantly simpler to handle than the error probability
constraint considered in posterior matching and its generaliza-
tions [7]–[9], [12].

A universal version of Ulam’s game in its channel coding
interpretation in the context of empirical capacity has been
introduced by Shayevitz and Feder [15], [16], further studied
by Eswaran et al. [17], and later generalized by Lomnitz and
Feder [18]. Nowak [19] found conditions under which general-
ized noisy binary search will find the target within O(log 1/δ)
samples. In all the aforementioned works, the underlying
adaptive procedure is some variation of the Horstien scheme.
It was shown in [19] that the Horstein scheme achieves
the optimal O(log 1/δ) sample complexity. However, it was
shown that even a repetition-code-flavored search where each
question is asked multiple times and the prevailing answer is
given as an input to the classical noiseless bisection search
also achieves the same sample complexity. Clearly, the exact
behavior of the sample complexity between the repetition and
the Horstein schemes is considerably different. In contrast to
these latter works, we are interested in a more refined analysis
that determines not only the optimal order (O(log 1/δ)), but
also an exact characterization of the number of required
queries as a function of the noise statistics, the resolution δ,
and the probability of error ε.

For the case of adaptive strategies, the search problem with
measurement dependent noise considered in this paper can
be viewed as a one-dimensional special case of the two-
dimensional noisy search problem introduced and investigated
by Naghshvar and Javidi [20]. Relying on the notion of
Extrinsic Jensen-Shannon (EJS) divergence, a pair of (non-
asymptotic) lower and upper bounds were obtained in [20].
Furthermore, numerical examples provided in [20] show that
a fully adaptive (with exponential computational complexity)
algorithm known as the MaxEJS algorithm in many scenarios
performs close to the obtained lower bound. As part of our
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current work, the achievability of the lower bound in [20] is
established via a simple three-phase search strategy.

Another line of work related to our search problem is on
group testing. In a group testing problem, there are K defective
items out of a total of N > K items. Any subgroup of the
N items can be probed for defects and a binary answer is
received, indicating whether the selected subgroup contains
defects or not. The seminal work by Drofmann [21] that
initiated work on this problem, has been aimed at finding
syphilitic men among the millions of US draftees during World
War II. Instead of taking a blood sample from each draftee and
sending it to the lab, samples were mixed (grouped) together
and tested. Only participants of grouped samples that tested
positive were individually diagnosed. It was shown that such
testing procedure can significantly reduce the total number of
lab tests required to find all K infected samples. A discrete
version of our search problem can be viewed as a group
testing problem with K = 1 and N = 1/δ. The vast majority
of works on group testing deal with the noiseless setting,
i.e., assume that the defectiveness test can make no errors.
Recently Atia and Saligrama [22] considered the problem of
noisy group testing from an information theoretic perspective
(see reference therein for related work on group testing).
However, the model where the noise depends on the size of
the group has never been considered; it was left as an open
problem in [23], see also reference therein. The measurement
dependent model is extremely relevant in group testing; for
instance, in the blood test example, if many samples are mixed
into one vial then the amount taken from each individual
is very small and the probability to detect positive samples
can be much lower compared to the case where only a small
number of samples are mixed together into one vial. In [24]
we extend the setting of the current paper to include stationary
multiple targets and measurement dependent noise. The setting
considered in [24] includes group testing as a special case.

In this work we take the perspective of [5], viewing the
search problem as a channel coding problem. Let us take
the case of a BSC observation channel as an example. When
the crossover probability p is measurement independent, then
based on the results of [25] for optimal error exponents for
channel coding with feedback, it can be readily shown that
using adaptive strategies one can achieve

E(τ ) = log (1/δ)

C(p)
+ log (1/ε)

C1(p)
+ O(log log

1

δε
)

where C(p) is the Shannon capacity of the BSC with crossover
probability p, and C1(p) = D(p‖1− p). This result is also the
best possible up to sub-logarithmic terms. For non-adaptive
strategies, given the relations between non-adaptive search
and non-feedback channel coding, standard random coding
exponents results [26] indicate for any fixed 0 < R < C(p)
there exists a strategy such that

τ = log (1/δ)

R
, log (1/ε) = E(R, p)

R
· log (1/δ)

where E(R, p) is the reliability function of the BSC, for
which bounds are known [26]. Hence, the minimal sample
complexity (with a vanishing error guarantee) is roughly the

same for adaptive and non-adaptive strategies in the limit of
high resolution δ → 0, and is given by E(τ ) ≈ log (1/δ)

C(p) .
This directly corresponds to the fact that feedback does not
increase the capacity of a memoryless channel [27]. Indeed,
given the analogy between search and channel coding, it is
not surprising that in all of the aforementioned works that
considered both adaptive and non-adaptive strategies, there
is no advantage for adaptive strategies in terms of sample
complexity.1 As we shall see, this is on longer true when the
crossover probability of the BSC can change as a function
of the measurement, or more generality, when the observation
channel is measurement-dependent.

B. Our Contributions

This work has several contributions. We begin with station-
ary targets and show that, in contrast to case of measurement
independent noise where adaptive and non-adaptive schemes
essentially achieve the same sample complexity, when the
observation channel depends on the query size then there is
a multiplicative gap between the minimal sample complexity
for adaptive vs. non-adaptive strategies, in the limit of high
resolution. This targeting rate gap generally depends on the
variability of the observation channel noise with the size of
the probed region, and can be arbitrarily large. The source
of the difference lies mainly in the fact that from a channel
coding perspective, the channel associated with measurement
dependent noise is time-varying in quite an unusual way; it
depends on the choice of the entire codebook. The analogy we
draw to channel coding allows us to treat any output alphabet
and not only the binary output case. Moreover, we show
that “dithering” allows us to consider arbitrary target location
(i.e., no distribution is assumed on the target location). The
maximal targeting rates achievable using adaptive and non-
adaptive strategies under known velocity are given. It is shown
that the optimal adaptive strategy does not need to be fully
sequential (as in Horstein’s scheme [6]), and that a three
phase search, where each phase is composed of a non-adaptive
search strategy (but depends on past phases output) is enough
to achieve the best possible performance. Thus, interestingly,
the optimal adaptive scheme is amenable to parallelization.
In addition, a rate-reliability tradeoff analysis is provided for
the proposed adaptive and non-adaptive schemes. It is shown
that the former attains the best possible tradeoff, i.e., achieves
the Burnashev error exponent [25].

Finally, we show how to extend the above results to the case
of non-stationary targets. For unknown velocity, the maximal
targeting rate achievable using non-adaptive schemes is shown
to be reduced by a factor of at least two relative to the case
of known velocity. Unlike the results for stationary targets,
here, there is a gap between our direct and converse theorems.
This gap diminishes as the unknown velocity becomes small.
Intuitively, when the target moves at constant velocity, we need

1Note that adaptive search strategies do however exhibit superior perfor-
mance over non-adaptive strategies for a fixed resolution, attaining the same
error probability with a lower expected search time. They are also asymptot-
ically better if a certain exponential decay of the error probability is desired,
which directly corresponds to the fact that the Burnashev exponent [25]
exceeds the sphere packing bound [26] at all rates below capacity.
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to locate it at two different time points and so that its velocity
could be calculated through the distance between the target
locations. Following this intuition, it is expected that one
would need at least double the samples as compared to the
stationary case. However, acquiring the target is much more
involved when the target velocity is unknown, and hence while
the converse theorem follows the same lines as the known
velocity case, the search strategy and its analysis are more
intricate. If the velocity is known, it is easy to see that the
stationary case results hold verbatim.

C. Organization

The rest of this paper is organized as follows. We begin
with searching for a stationary target under measurement
dependent noise. In Section II we give the notation used
throughout the paper and formally present the stationary target
search problem. Sections III and IV deal with non-adaptive
and adaptive search strategies respectively. In Section V,
we extend our results to include unknown target velocity.
We conclude this work and discuss several future directions
in Section VI.

II. PRELIMINARIES

A. Notations

Random variables are denoted by upper case letters
(e.g., X ,Y ) and their realizations are denoted by lower case
letters. Similarly, random vectors of length N are denoted by
boldface letters (e.g., X and x). Alphabets (discrete or continu-
ous) are denoted by calligraphic letters, e.g., X . The Shannon
entropy of a random variable (r.v.) X is denoted by H (X).
The cardinality of a finite set S is denoted by |S|. The
Lebesgue measure of a set S ⊂ R is similarly denoted by |S|.
We write 1(·) for the indicator function. A random mapping
(channel) from X ∈ X to Y ∈ Y is denoted by P(y|x).
When the channel depends on a parameter q , the channel
is denoted by Pq (y|x). For binary input channels Pq (y|x),
the KL divergence between the output distribution under input
’1’ and the output distribution under input ’0’ is denoted by
C1(q). Namely,

C1(q) � D(Pq (y|x = 1)||Pq(y|x = 0)).

The mutual information between two jointly distributed r.v.s
X and Y is denoted by I (X; Y ). When X is binary with
Pr(X = 1) = p and the channel between X and Y depends on
a parameter q , we denote the mutual information between X
and Y by IXY (p, q). The capacity of a binary input channel
Pq(y|x) is denoted by C(q), i.e.,

C(q) � max
p

IXY (p; q).

B. Setup

Let w ∈ [0, 1) be the initial position of the target, arbitrarily
placed on the unit interval. At time n ∈ {1, 2, . . . , N}, an agent
may seek the target by choosing (possibly at random) any

measurable query set Sn ⊂ [0, 1) to probe. Let Qn
	= |Sn |,

namely, Qn denotes the total size of the search region at

time n. Let Xn = 1(wn ∈ Sn) denote the clean query
output which is binary signal indicating whether the target
is in the probed region. The agent’s observation at time
n, will be denoted by Yn ∈ Y , where Y can be either
discrete or continuous. Given Xn = xn , the query observed
output is governed by the observation channel Pqn (yn|xn),
which is a binary-input, Y-output channel that can depend on
the query region size qn . We will only deal with channels for
which p(y|x) is a continuous function of q for any 0 ≤ q ≤ 1,
C1(q) < ∞.2 We will further assume that the query channel
does not become worse as the search region shrinks, namely,
for q1 < q2, C(q1) ≥ C(q2) and C1(q1) ≥ C2(q2). We
illustrate the dependence of the channel on the size of the
query region in the following examples, which will serve
as running examples throughout the paper. The first depicts
a symmetric binary output setting while the second, a non-
symmetric setting with continuous output alphabet.

Example 1: Suppose the query output is binary. The agent
obtains a corrupted version Yn of Xn, with noise level that
corresponds to the size of the query region qn. Specifically,

Yn = Xn + Zn (mod 2),

where Zn ∼ Bern (p[qn]), and where p : (0, 1] �→ [0, 1/2)
is a linear function p = aqn + b. for some a, b ≥ 0 such
that 0 < p < 1

2 . In this example, when a > 0 the output
becomes “noisier” as the query region size increases. When
a = 0, the query output is given by a binary symmetric channel
(BSC) with crossover probability b.

Example 2: Suppose the output is Gaussian r.v. whose
distribution depends both on the query size and on whether the
target was hit or missed. Specifically, for constants μ, a ≤ b,
if the target was hit (X = 1), Y ∼ N (μ, 1 + aq) and if
the target was missed X = 0, Y ∼ N (0, 2 + bq). This is
an example where the channel behaves differently when the
target is hit or missed. When hit, the signal has a constant
component and is more concentrated then when missed.

A search strategy is a causal protocol for determining the
sets Sn = Sn(Y n−1), associated with a stopping time τ and
estimator ̂Wτ = ̂Wτ (Y τ ) for the target position. A strategy
is said to be non-adaptive if the choice of the region Sn is
independent of Y n−1, i.e., the sets we probe do not depend on
the observations. In such a case, the stopping time is also fixed
in advance. Otherwise, the strategy is said to be adaptive, and
may have a variable stopping time. A strategy is said to have
search resolution δ and error probability ε if for any w,

Pr(|̂Wτ − w| ≤ δ) ≥ 1 − ε.

We are interested in the expected search time E(τ ) for such
strategies, and specifically in the targeting capacity, which
is the maximal ratio log 1/δ

E(τ )
such that ε → 0 is possible as

δ → 0. The targeting capacity captures the best per query
exponential shrinkage of the uncertainty region when the
number of queries becomes large, and plays exactly the same
role as rate in a channel coding problem (this will become
evident in the proof of the direct part of Theorem 1). Below

2This means that the input cannot be deduced without error from the output.
All the results of this paper hold trivially for clean channels.
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we will make a distinction between adaptive and non-adaptive
targeting capacities, where the latter corresponds to the cases
where only non-adaptive schemes are allowed, respectively.
Precisely, we say that a sequence of strategies indexed by
k achieves a targeting rate R and an associated targeting
reliability E = E(R), if δk → 0 as k → ∞ and

E(τk) ≤ log (1/δk)

R
, log (1/εk) ≥ E

R
· log (1/δk),

for all k large enough. The quantity E(R) is sometimes also
referred to as the rate-reliability tradeoff associated with the
sequence of schemes. The adaptive targeting capacity is the
supremum of all achievable targeting rates. The non-adaptive
targeting capacity is the supremum of all achievable targeting
rates when restricting the schemes to be non-adaptive.

III. STATIONARY TARGET - NON-ADAPTIVE STRATEGIES

We state our main result for the non-adaptive case.
Theorem 1: Let Pq(y|x) be the channel between the query

result and the query output for a query region of size q. The
non-adaptive targeting capacity is given by

max
q∈(0, 1

2 )
IXY (q, q), (1)

where X is a binary r.v. with Pr(X = 1) = q. Moreover, for
any R below the non-adaptive targeting capacity, there exist
a non-adaptive search strategy such that

τ = log (1/δ)

R
, log (1/ε) = Er (R, q∗)

R
· log (1/δ),

where q∗ is the maximizer in (1), and

Er (R, q∗) = max
ρ∈(0,1)

E0(ρ, q∗) − ρR

is the random coding exponent [26] for the channel Pq∗(y|x)
with input distribution q∗, at rate R.

Theorem 1 clearly bears many similarities to the standard
channel coding theorem, with some (important) differences.
We will start by building intuition that will clarify the con-
nection to channel coding, and then highlight the distinctions.
This discussion will be followed by formal proofs of the direct
and converse parts of Theorem 1.

A. Discussion and Intuition

We begin by adapting the result of the Theorem to Exam-
ple 1. The mutual information in the binary case is given by

IXY (q; q) = h2(q ∗ p(q)) − h2(p(q)). (2)

In contrast to the mutual information expression between
input and output of a BSC where the noise is given and
does not depend on the transmission scheme, here the second
term in (2) depends on the input prior as well. We plot the
dependence of (2) on q for our specific choice of p(q) which
is given by a linear function of q in Fig. 1a. As can be seen,
our mutual information functional is no longer concave in the
input distribution as in the classic channel coding setup, due
to the effect of measurement dependence. We also numerically
plot IXY (q; q) for the Gaussian case of Example 2 in Fig. 1b.3

3Here, the output, Y , is a mixture of two Gaussians with weights q, 1 − q.
Since there is no closed form expression for the differential entropy of a
Gaussian mixture, we approximate it numerically

As can be seen, when the dependence of the variance of the
output on the query size is strong, the optimal query size
becomes small. Also, since in this example the signal is more
concentrated when the target is hit, the optimal query size
for weaker dependence contains more than half of the queried
region.

To build intuition, let us first consider a simple noiseless
model, where we see the binary noiseless query result as the
query output. We divide the unit interval into M = 1/δ small
equi-sized “sensors” and use a binary query matrix (codebook)
with M rows and N columns, where N will be the total
number of queries we will execute. Each row in the codebook
represents a specific sensor and each column represents a
specific query. At time n, the query region Sn is the union
of all the sensors that have ’1’ in the n-th column. This is a
non-adaptive search since the matrix is fixed in advance (does
not depend on Y n). The simple noiseless model is depicted
in Fig. 2a. The query result is ’1’ whenever the sensor covering
the target location is activated, and ’0’ otherwise. Therefore,
in the clean model we see at the output the exact row that
corresponds to the correct sensor. The decoder will make an
error in this case only if there is another row, belonging to
another sensor, with exactly the same binary values as the
correct row. In order to keep all rows different, N = �log M� is
enough. Such N corresponds to a targeting capacity of R = 1,
which is the best we could hope for. Note that the well known
binary “divide-and-conquer” adaptive search algorithm, which
reduces the query region by half at each stage, achieves the
same N = �log M� to produce an accurate estimate.

Moving on to noisy settings, let us start by adding a query
independent channel between the query result and the output
(see Fig. 2b). As before, the query result is the codeword
pertaining to the correct sensor. The decoder in this setting
faces the exact same problem as a decoder in a standard
communication setting, where it needs to decide on the correct
transmitted codeword given the channel output. The non-
adaptive targeting capacity will therefore be achieved by
a codebook that achieves the capacity of the binary input
channel P(y|x). In our example, where the channel is a
BSC(p), the maximal rate is given by (formally proved later)
the well known capacity of the BSC(p), 1 − h2(p). This same
result was obtained in [5] with an adaptive strategy.

In the last two examples, adaptive and non adaptive search
strategies achieve the same targeting capacity. Given the
correspondence seen in these examples to the problem of
single user channel coding, this is not surprising since it is
well known that feedback does not increase the capacity of
a single user channel. As seen in the proof of the converse
to Theorem 1, adaptive schemes cannot outperform their non-
adaptive counterparts in terms of rate as long as the channel
does not depend on the query size. In both the above examples,
when the channel is a BSC, the optimal codebook will have
(approximately) the same number of 1’s and 0’s in each row
and column (as the capacity achieving prior is Ber(1/2)),
which in turn implies that the optimal query size in each query
is 1/2.

When the observation channel depends on the query size,
the search problem is no longer equivalent to any classic
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Fig. 1. Behavior of IXY (q; q). (a) IXY (q; q) as a function of q for Example 1 with a = 0.7 and b = 0.1. (b) IXY (q; q) as a function of q for Example 2
with μ = 0.1, b = 5 and various values of a.

channel coding problem. This happens since the channel is
no longer fixed, but rather time-varying and determined by the
choice of the codebook, as the latter determines the query sizes.
This dependence is depicted in Fig. 2c. As seen in Fig. 1a,
when the channel depends on the query size, the optimal query
size is far from 1/2. In Example 1, the optimal solution backs
off from the uniform distribution (which would be optimal for
any BSC) in order to communicate through a better channel,
albeit with a suboptimal input distribution.

B. Proof of Achievability

Achievability is obtained via random coding using the query
scheme described in the previous subsection. Formally, let
q∗ denote the input distribution that achieves the supremum
in (1). We partition the unit interval into M = 1

δ equi-sized
subintervals {bm}. Set R = log M

N . We now draw a codebook
with M rows, where each row xm has N bits. The codebook
is drawn i.i.d. Bern(q∗). We define our random query set Sn

according to the codebook’s columns4:

Sn
def=
⎛

⎝A +
⋃

m:xm,n=1

bm

⎞

⎠ mod 1,

where A ∼ Unif([0, 1)) is a random “dither” signal, indepen-
dent of the codebook. This dithering procedure renders our
setting equivalent to the setup where the initial position is
uniform and independent, and where the query sets are given
by A = 0. Thus, without loss of generality, we proceed under
this latter setup.

Unlike the standard analysis of random coding [28], here,
the channel depends on the codebook through the size of the
query region. Therefore, since Sn is a random variable, so is
the choice of the channel. The following lemma states that for
a random codebook, and N large enough, the channels used
throughout the N queries will be arbitrarily close to Pq∗(y|x)
with probability that converges to unity double exponentially
fast.

4The summation and modulo operations are taken as operations on sets,
in the usual Minkowski sense.

Lemma 1: Let A be the event where ||Sn | − q∗| ≤ � for
all n. Then for any � > 0,

Pr(Ac) ≤ N2−2N RD(q∗+�||q∗)
, (3)

where D(q∗ + �||q∗) = (q∗ + �) log q∗+�
q∗ +

(1 − (q∗ + �)) log 1−(q∗+�)
1−q∗ .

Proof: Note that |Sn | = 2−N R∑2N R

i=1 1(Xi,n = 1). For

the nth column, Pr(||Sn | − q∗| ≥ �) ≤ 2−2N RD(q∗+�||q∗)
follows

directly from Chernoff’s bound [28]. Then, the union bound
is applied to accommodate all N columns. �

Remark 1: Under the event A in Lemma 1, and using the
continuity of the observation channel in q, the probability that
the measurements are observed through a channel which is
not arbitrarily close to pq∗(y|x) vanishes double exponentially
fast as N → ∞. Therefore, in the derivation below we will
assume that the observation channel is pq∗(y|x). While there
could be a mismatch between the decoder which decodes
according to pq∗(y|x) and the actual channel, this mismatch
is arbitrarily small. The continuity of the channel and hence
the error exponent in q, along with Lemma 1 assures us that
the error exponent which pertains to the mismatched decoder
and the actual channel is arbitrarily close to the one we derive
assuming that the observation channel is pq∗(y|x).

After N queries, we find the codeword that has the highest
likelihood under the assumption that the measurements are
observed through Pq∗(y|x). We now analyze the probability of
error. This analysis follows Gallager’s random error exponent
analysis [26] with the distinction that under the conditioning
on A, the codewords are not independent.

We write the average probability of error as

Pe = Pr(A) Pr(e|A) + Pr(Ac) Pr(e|Ac). (4)

The second term vanishes double exponentially fast. For the
first term we have

Pr(e|A) =
∫

y
d y
∑

xk

Pr(xk |A)PA(y|xk) Pr(e|xk, y,A), (5)

where y are the observations and PA(y|xm) is the channel
(probability density function) induced by the event A. In what
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Fig. 2. (a) Querying with a clean channel. (b) Querying through a measurement independent channel. (c) querying through a measurement dependent channel.

follows, as explained in Remark 1, we assume that this channel
is Pq∗(y|x).

Let Ek′ denote the event that the codeword xk′ is chosen
instead of xk . Following [26] we write for 0 ≤ ρ ≤ 1

Pr(e|xk, y,A) ≤
⎛

⎝

∑

k′ �=k

Pr(Ek′ |A)

⎞

⎠

ρ

, (6)

and

Pr(Ek′ |A) =
∑

xk′ :PA( y|xk)≤PA( y|xk′ )
Pr(xk′ |xk,A). (7)

Note that unlike [26, eq. (5.6.8)], we cannot assume the
codewords are independent under event A. To overcome
this, we note that by simple application of the law of total
probability we have:

Pr(xk, xk′ |A)) ≤ Pr(xk, xk′ )

1 − Pr(Ac)
= Q(xk)Q(xk′ )

1 − Pr(Ac)
(8)

Pr(xk |A) ≥ Q(xk) − Pr(Ac), (9)

where Q(·) denotes the random coding prior.
Using (8) and (9) along with the Bayes rule we

have

Pr(xk′ |xk,A) = Pr(xk′ , xk |A)

Pr(xk |A)

≤ Q(xk)Q(xk′ )

(1 − Pr(Ac))(Q(xk) − Pr(Ac))

≤ Q(xk)Q(xk′)

Q(xk)(1 − Pr(Ac))(1 − Pr(Ac)/Q(xk))

≤ Q(xk′ )

(1 − Pr(Ac)/QN
min )2

= Q(xk′ )(1 + �′), (10)

where Qmin denotes the probability of the least probable
binary symbol under Q. Note that Pr(Ac)/QN

min vanishes
double exponentially fast due to Lemma 1 and therefore �′ in
(10) also vanishes double exponentially fast. We conclude that
while the conditioning on A introduces dependencies between
the codewords, since we condition on a sufficiently high
probability event, the probability of the conditioned event will
become arbitrarily close to the probability of the unconditioned
event.

After substituting (10) in (7) and (6) we can follow Gal-
lager’s derivation of the random error exponent [26] to arrive
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at

Pr(e|xk, y,A)≤
⎡

⎣(M−1)
∑

x
Q(x)(1+�′)

Pq∗(y|x)
1

1+ρ

Pq∗(y|xk)
1

1+ρ

⎤

⎦

ρ

.

(11)

Substituting (11) into (5) we arrive at

Pr(e|A) ≤ Mρ

∫

y
d y
∑

xk

Q(xk)(1 + �′)Pq∗(y|xk)
1

1+ρ

×
[

∑

x
Q(x)(1 + �′)Pq∗(y|x)

1
1+ρ

]ρ

. (12)

Now, we can harness the fact �′ vanishes double exponentially
fast and therefore does not affect the error exponent, hence5

Pr(e|A)
·≤ Mρ

∫

y
d y
∑

xk

Q(xk)Pq∗(y|xk)
1

1+ρ

×
[

∑

x
Q(x)Pq∗(y|x)

1
1+ρ

]ρ

. (13)

From this point on, since the channel is memoryless and the
codewords under Q(·) are drawn i.i.d. we can follow [26,
5.6.11–5.6.12] verbatim to arrive at

Pr(e|A)
·≤ 2−N(E0(ρ,q∗)−ρR),

E0(ρ, q∗) = − log
∫

y
dy
{

q∗Pq∗(y|x = 1)
1

1+ρ

}

+(1 − q∗)Pq∗(y|x = 0)
1

1+ρ
1+ρ

. (14)

The exponent is positive as long as R ≤ IXY (q∗, q∗). Since
the second addend in (4) vanishes double exponentially fast,
this concludes the achievability part of the proof of Theorem 1.

C. Proof of Converse

Denote the fixed stopping time by τ = N . Let {Sn}N
n=1

be any non-adaptive strategy achieving an error probability
ε with search resolution δ. We prove the converse holds
even in the average case, namely under the less stringent
requirement where the initial position is uniformly distributed
W ∼ Unif[0, 1). This immediately implies the same upper
bound on the rate in the worst case, namely for a fixed but
unknown initial position. The idea of the converse proof is to
discretize the problem, and then follow the standard channel
coding converse.

Partition the unit interval into �β/δ� equi-sized intervals
for some constant β ∈ (0, 1

2 ), and let W ′ be the index of the
interval containing W . Any scheme {Sn} that returns W with
resolution δ and error probability �, can be made to return

W ′ with an error probability at most ε′ def= ε + 2β, where the
latter addend stems from the probability that W is close to a
boundary point of the grid, and ̂W is estimated to be in the
adjacent (wrong) bin.

When the target is uniformly distributed on the unit interval,
for any given search region, the probability that we hit the

5Here an
·≤ bn means that limn→∞ 1

n log an
bn

≤ 0.

target depends only on the size of the region. Therefore,

we have that Xn ∼ Bern(qn) where qn
def= |Sn | and that

Yn is obtained from Xn through a memoryless time-varying
channel Pqn (y|x). Since the scheme is non-adaptive and fixed
in advance, the channels

{

Pqn (y|x)
}N

n=1, while time varying,
are known in advance, and given the non adaptive search
strategy, do not depend on past outputs Y n−1. In what follows,
we also allow the scheme to use randomness (as this was
used in the direct part as well), encapsulated in a r.v. U of an
arbitrary cardinality that is independent of W . Following the
steps of the converse to the channel coding theorem, we have

log

⌈

β

δ

⌉

= H (W ′|U)

= I (W ′; Y N |U) + H (W ′|Y N , U)
(a)≤ I (W ′; Y N |U) + �′ log(β/δ) + 1

=
N
∑

n=1

I (W ′; Yn|Y n−1, U) + �′ log(β/δ) + 1

≤
N
∑

n=1

I (W ′, Y n−1, U ; Yn) + �′ log(β/δ) + 1

(b)≤
N
∑

n=1

I (W ′, W, Y n−1, U ; Yn) + �′ log(β/δ)+1

(c)=
N
∑

n=1

I (W ′, W, Xn , Y n−1, U ; Yn) + �′ log(β/δ)+1

(d)=
N
∑

n=1

I (Xn; Yn) + �′ log(β/δ) + 1

(e)=
N
∑

n=1

IXY (qn, qn) + �′ log(β/δ) + 1

≤ N sup
q

IXY (q, q) + �′ log(β/δ) + 1, (15)

where (a) is by virtue of Fano’s inequality, (b) follows since
conditioning reduced entropy, (c) follows since Xn is a func-
tion of W and U , (d) follows since the search scheme does
not depend on Y n−1 and the channel from Xn to Yn , given the
scheme, is memoryless. Finally, (e) follows from the definition
of IXY (p; q) and noticing that the size of the search region
governs the input distribution. Rearranging terms, dividing by
N(1 − ε′) and recalling that R = log(1/δ)

N we obtain

R ≤ 1

1 − ε′

(

sup
q

IXY (q, q) + 1

N

)

− log β

N

= 1

1 − ε − 2β

(

sup
q

IXY (q, q) + 1

N

)

− log β

N
.

Noting that the inequality above holds for any β ∈ (0, 1
2 ) and

ε small enough, the converse now follows by taking the limit
N → ∞, then β → 0 and then requiring ε → 0.

Remark 2: Note that here, in contrast to the standard
memoryless channel coding setup where the channel noise
is strategy independent, (d) above does not generally hold
when an adaptive strategy (i.e., feedback) is employed; this
stems from the fact that in this case, the channel itself would
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generally depend on Y n−1 (since |Sn | is determined by it), and
therefore Y n−1 → Xn → Yn would not form a Markov chain.
This means that when adaptive strategies are considered and
the channel Pq(y|x) is not constant in q, the above converse
will not hold. As will be seen in Section IV, indeed, the tar-
geting rates that are attainable with adaptive schemes can
significantly exceed their non-adaptive counterparts. However,
if Pq (y|x) does not depend on q, the above converse proof
holds for adaptive schemes as well, meaning that in that case
there is no gain in terms of rate from adaptive schemes (as is
well known).

Remark 3: The converse was proved under a uniform distri-
bution of the initial target location. As mentioned, this implies
the same upper bound on the targeting rate under the more
stringent worst case initial position setup considered in the
paper. It is not difficult to show that the same converse also
holds (with the obvious minor technical modifications) for
many other initial target distributions, e.g., for any distribution
that is absolutely continuous w.r.t. to a uniform distribution
over a finite union of intervals. We note that in general, higher
targeting rates can clearly be achieved under other initial
location distributions (e.g., in the most extreme case, discrete
distributions).

IV. STATIONARY TARGET - ADAPTIVE STRATEGIES

In this section, we consider the gain that can be reaped
by allowing the search decisions to be made adaptively.
Here, the duration of search τ will generally be a random
stopping time dependent on the measurements sample path.
Moreover, the choice of the probing regions Sn , for n up
to the horizon τ , can now depend on past measurements.
We characterize the gain in terms of the adaptive targeting
capacity, and the targeting rate-reliability tradeoff. While the
most general adaptive schemes can be fully sequential (as for
example in the classical case of binary search over noiseless
channels), we will see that adaptive schemes with very few
phases, where each phase employs a non-adaptive strategy but
depends on the outcome of the previous phase (hence overall
adaptive) are enough to achieve the optimal rate-reliability
tradeoff. Furthermore, we will show that adaptivity allows us
to achieve the maximal possible rate and reliability, i.e., those
associated with the best observation channel in our model.

In the classical channel coding setup it is well known
that feedback, while not affecting the capacity, can signifi-
cantly improve the targeting reliability (error exponent). Fol-
lowing this, in Section IV-A we present simple adaptations
of two well known schemes to our setting, that increase
the targeting reliability beyond the sphere-packing bound.
In Section IV-B we then proceed to harness the fact that for
measurement dependent observation channels, using feedback
does not only improves the targeting reliability, but also
increases the targeting capacity. Note again that this fact does
not contradict Shannon’s famous result [29] that feedback does
not increase capacity in a (classical) point to point channel.

A. Non Adaptive Search With Validation

As a first attempt at an adaptive strategy, we continue with
the non-adaptive search from the previous section, but allow

the agent to validate the outcome of the search phase. If the
validation fails, the agent restarts the search and discards
all past data. We call such a validation failure an erasure
event. Therefore, if the probability of erasure is given by
Pr(E) and N queries were made until either the location is
estimated or erasure is declared, the average number of queries
will be given by

E[τ ]= N
(

1 + Pr(E) + Pr(E)2 + Pr(E)3 . . .
)

= N

1 − Pr(E)
,

(16)

incurring a rate penalty of 1 − Pr(E) compared to the non
adaptive scheme. Therefore, as long as Pr(E) is kept small,
there is effectively no penalty in rate. However, given that
erasure was not declared, the probability of error can be
greatly improved compared to the non-adaptive scheme. We
will consider two validation schemes, due to Forney [30] and
Yamamoto and Itoh [31].

In [30], Forney considered a communication system in
which a decoder, at the end of the transmission, can signal
the encoder to either repeat the message or continue to the
next one. Namely, it is assumed that a one bit “decision
feedback” can be sent back to the transmitter at the end of
each message block. This is achieved by adding an erasure
option to the decision regions, that allows the decoder/agent
to request a “retransmission” if uncertainty is too high, i.e., to
restart the exact same coding process from scratch. In our
search problem, this means that if the likelyhood of one
of the codewords is not high enough compared to all other
codewords, erasure is declared and the search is restarted from
scratch.

Proposition 1: Let Pq (y|x) be the channel between the
query result and the query output for a query region of size q.
The targeting rate-reliability tradeoff for non-adaptive scheme
with Forney’s decision-feedback validation is given by

E = max
ρ≥1

E0(R, ρ) − ρR,

with

E0(ρ, R) =
∫

y
dy

1
∑

x=0

Q∗(x)Pq∗(y|x)

×
⎡

⎣log Pq∗(y|x)−log

(

1
∑

x ′=0

Q∗(x ′)Pq∗(y|x ′)
1
ρ

)ρ
⎤

⎦,

where q∗ is the maximizer in (1) and Q∗(x = 1) = q∗.
The analysis and proof of this proposition is given in

[30, p. 213] and therefore we only sketch the idea here.
Given y, a codeword k will be declared as the output if

Pq∗ ( y|xk)
∑

k′ �=k Pq∗ ( y|x ′
k)

≥ 2NT , where T > 0 governs the tradeoff

between the probability of error and the probability of erasure.
Let ε1 denote the event where y does not fall within the
decision region of the correct codeword and let ε2 denote the
event of undetected error. This gives us Pr(E) = Pr(ε1) −
Pr(ε2) ≤ Pr(ε1). Forney showed that the choice of T controls
the tradeoff between Pr(ε1) and Pr(ε2) and that we can keep
Pr(ε1) arbitrarily small (vanishing with a positive exponent)
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while achieving the exponential decay rate given by Proposi-
tion 1 for Pr(ε2). The second validation scheme we consider
was proposed by Yamamoto and Itoh in [31] in the context of
channel coding with clean feedback. Unlike Forney’s scheme
which requires only one bit of feedback, this scheme requires
the decoder to feed back its decision. While perfect feedback
is impractical in a communication system, in our model it is
inherent (as the encoder and decoder are the same entity) and
can be readily harnessed. Let 0 ≤ λ ≤ 1. A block of N queries
is divided into two parts as follows. In the first part, of size
N(1 − λ), the non-adaptive scheme of Section III-B is used.
After completing the search phase with resolution δ, the agent
continues to probe the estimated target location, namely an
interval of size δ with λN queries. If the probed region
contains the target, the output of the validation phase should
look like a sequence of ’1’s passing through Pδ(y|x = 1),
otherwise (the probed region does not contain the target),
the output is drawn according to Pδ(y|x = 0). Thus, after the
probing phase, the agent is faced with a binary hypothesis test
with λN i.i.d samples drawn according to Pδ(y|x = 1) if the
target was hit (H1) and according to Pδ(y|x = 0) otherwise
(H0). If the agent declares H0 (erasure), the search is restarted
from scratch. If the agent declares H1, the target location given
by the first phase is declared as the estimated target location.
Thus, an error will occur if the agent declares H1 when the
target was missed in the first phase. We have the following
result for this scheme:

Proposition 2: Let Pq (y|x) be the channel between the
query result and the query output for a query region of
size q. The targeting rate-reliability tradeoff for non-adaptive
schemes with a Yamamoto-Itoh validation is given by

E = C1(0)

(

1 − R

IXY (q∗; q∗)

)

, (17)

where q∗ is the maximizer in (1).
Proof : Let ε denote an error event. By the Chernoff-Stein

lemma [28, Sec. 11.8], the probability of declaring H0 when
H1 is true (false erasure, or “false alarm” in the Neyman-
Pearson terminology) can be arbitrarily small while attaining

Pr(ε) ≤ 2λN D(Pδ(y|x=1)||Pδ(y|x=0)) = 2λNC1(δ). (18)

Letting E denote the erasure event and ε1 denote the event
of error in the first phase, we have that Pr(E) ≤ Pr(ε1) +
Pr(H0|H1), where Pr(H0|H1) denotes the probability that H0
was declared although the target was hit in the first phase.
The latter probability can be made arbitrarily small for large
enough N by the Chernoff-Stein lemma while the former
probability vanishes exponentially fast with N by Theorem 1.
Therefore, for any � > 0 there exists N large enough such
that Pr(E) ≤ �. Therefore, E[τ ] ≤ N

1−� . We use the highest

possible rate of IXY (q∗; q∗) = log 1
δ

(1−λ)N for the first phase.
Therefore, the effective rate of one round (without taking
erasure into account) is given by R, we have that λ = 1− R

C(q∗) .
Using this, the error exponent attained by this scheme is lower
bounded by

− log Pr(ε)

E[τ ] ≥ C1(δ)

(

1 − R

IXY (q∗, q∗)

)

(1 − �). (19)

Since both δ and � can be made arbitrarily small, this scheme
attains the exponent given in Proposition 2

Remark 4: Note that the gain from adaptivity is twofold
here. Not only does adaptivity allow us to validate the first
phase result and increase the error exponent, it also allows us
to validate the result over the best possible channel P0(y|x).
Therefore the attained exponent is higher than the optimal
Burnashev [5] exponent for the channel Pq∗(y|x).

B. Two-Phase Search With Validation

In this section, we show that a two-phase scheme with
Yamamoto-Itoh validation achieves the best possible perfor-
mance, improving upon non-adaptive strategies (with and
without validation) both in targeting capacity and in targeting
rate-reliability tradeoff.

Theorem 2: Let Pq (y|x) be the query observation channel
and let q∗ be the optimal solution in (1). For any α ∈ (0, 1

2 ),
there exists a γ ∈ (0, 1) and search scheme with error
probability ε and resolution δ, satisfying

E[τ ]≤
(

log(1/α)

IXY (q∗, q∗) + log(1/δ)

maxq IXY (q, αq)
+ log(1/�)

C1(δ)

)

/(1−γ ),

where γ → 0 as α → 0 and δ → 0.
Corollary 1: The adaptive targeting capacity is given by

C(0) = max
p∈[0,1] IXY (p, 0),

and the associated targeting rate-reliability tradeoff is given
by

E(R) = C1(0)

(

1 − R

C(0)

)

.

Remark 5: Juxtaposing Theorem 1 and Corollary 1 above,
we conclude that in contrast to the case of constant measure-
ment independent noise, adaptive search strategies outperform
the optimal non-adaptive strategy in both targeting rate and
reliability.

Proof: We prove the theorem for a fixed α and
δ, ε → 0. In the first search phase, the agent employs
the optimal non-adaptive search strategy with τ = N1 and

resolution α. By Theorem 1, as long as N1 >
log 1

α
IXY (q∗,q∗) , then

at the end of this phase the agent knows an interval of size α
containing the target with probability 1−�1, where �1 vanishes
as N1 grows.

In the second phase, the agent “zooms-in” and performs
the search only within the α-sized interval obtained in the
first phase. To that end, the agent employs the optimal non-
adaptive search strategy with τ = N2 and resolution δ, with
the query sets properly shrunk by a factor of α. We note
that in this phase, all queried sets are of size smaller than α.
Therefore, after appropriately scaling the affect of the query
size in Theorem 1, as long as N2 > log 1/δ

maxq IXY (q,αq) and given
that the first phase outcome was correct (the decided α-sized
region contained the target), then at the end of the second
phase the agent knows an interval of size δ containing the
target, with probability 1 − �2, where �2 vanishes to zero as
N2 grows with the random coding error exponent given by
Theorem 1.
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At this point, the agent performs the Yamamoto-Itoh val-
idation step of length N3, which queries a fixed interval of
size δ. If not successful, the agent repeats the whole three-
phase process from scratch. By the same arguments that lead
to Proposition 2, the probability of falsely declaring a δ region
as containing the target when the target is not contained in it
(namely, not detecting an error in the first or second phase)
can be smaller than � as long as N3 > log(1/�)

C1(δ)
. If the last

phase declares an erasure, we start the three-phase search from
scratch. Denote the erasure event by ε. The probability of ε
is upper bounded by the sum of the first and second phase
errors, which can be made arbitrarily small by letting N1, N2
grow. Therefore, the expected stopping time of this whole
procedure is N1+N2+N3

1−Pr(ε) , which is the statement of the theorem
with γ = Pr(ε). Since by Theorem 1 the first and second
phases errors vanish as N1, N2 become large, ε vanishes as
N1 + N2 becomes large (equivalently, as α, δ become small),
and the proof of Theorem 2 is concluded.

To prove the corollary, we let α vanish much slower than
δ, such that the length of the first phase becomes negligible
compared to the other two phases. Letting N2 = λN and
N3 = (1 − λ)N and choosing λ as in Proposition 2 we arrive
at the Burnashev error exponent. As α → 0 our search channel
for the second phase becomes arbitrarily close to the best
possible channel we can operate over (P0(y|x)), which by our
assumptions on the monotonicity and continuity of C(q) has
the highest capacity. Therefore by the channel coding theorem,
no higher targeting rate can be achieved. Furthermore, since
the Burnashev exponent is tight [5] and also monotonic and
continuous (for every R) in both C(q) and C1(q), and since
these two functions are in turn monotonic and continuous in
q under our assumptions, the rate-reliability achieved by our
scheme is also the best possible. �

C. Numerical Results for Example 1

The rate-reliability tradeoff of the above suggested adaptive
schemes as well as a lower bound on the non adaptive one for
our binary Example 1 is depicted in Fig. 3. The gain in terms
of both rate and reliability of adaptive schemes is apparent.
It is seen that Forney’s decision feedback scheme (labeled
by ’b’) which upper bounds the sphere packing bound and
hence the exponent of any non-adaptive scheme is far below
the exponents attained by the adaptive validation schemes.
The twofold gain mentioned in Remark 4 can be seen in
the difference between the lines labeled ’c’ and ’d’, where
’c’ is the exponent attained by performing the Yamamoto-Itoh
validation on Pq∗(y|x) while ’d’ is the performance attained by
validation over the best possible channel. Finally, ’e’ depicts
the result of Theorem 2 as applied to Example 1, where
we added a search phase and attained both the best possible
exponent and the optimal targeting rate, which pertains to the
capacity of the best possible observation channel.

V. MOVING TARGET WITH UNKNOWN VELOCITY

In this section, we allow the target to move at an unknown
constant velocity. We will be interested in finding not only
the initial location, but also the velocity, both up to some fixed

Fig. 3. Error exponents (known velocity) for noise growing linearly with
size: p[0] = 0.1, p[ 1

2 ] = 0.45 (a) Random coding (b) Decision feedback
(c) Burnashev’s upper bound for BSC(p[q∗]) (d) Yamamoto-Itoh validation
for the non-adaptive scheme (e) Yamamoto-Itoh validation for BSC(p[0]).

resolution. As mentioned in the Introduction, adding this extra
unknown parameter to the search problem should intuitively
decrease the rate by a factor of two. This penalty stems from
the fact that even if we could freeze the target at different
times (and positions) and run our stationary target search,
in order to deduce its velocity we would need to run the search
twice, and compute the velocity from the distance between
the frozen positions. Differently put, we are in some sense
trying to convey two messages (initial location and speed) of
roughly the same cardniality over the channel rather than just
one (initial location) as before, which intuitively should result
in a factor two penalty in rate. The results we present in this
section indeed support this intuition.

Since we do not want our moving target to fall into oblivion
and to forever be lost when it reaches the edges of the unit
interval, in this section we consider targets moving on the unit
circle. Clearly, with a sample rate of one sample per second,
we will not be able to distinguish e.g. between a stationary
target and a target that traverses at a velocity of exactly one full
circle per second. For that reason, we consider only velocities
v such that |v| ≤ vmax ≤ 1

2 , where a negative velocity denotes
a counterclockwise movement. While our results hold for any
vmax ≤ 1

2 , from a practical standpoint vmax should be a very
small number; it is quite unreasonable to assume that the target
moves across the entire search area within a small number of
samples.

Below we only extend the non-adaptive search to include
moving targets. Extending adaptive schemes follows along
the same lines as before, where we use the non-adaptive
scheme in several phases: in the first phase we narrow the
search region, and narrow down both location and velocity in
the second phase. To avoid repetition, we omit the details of
this extension.

A. Setting and Preliminaries

Below we naturally identify the unit interval modulo 1 with
a circle of unit circumference. Correspondingly, we define the
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cyclic distance between two points w,w′ in the unit interval
to be the length of the shortest arc connecting the two points
on the associated circle, i.e.,

|w − w′|c def= min
{|w − w′|, 1 − |w − w′|} .

We assumed that the target starts at an arbitrary
location w0, and moves at a constant velocity V ∼
Uniform ([−vmax, vmax]) along the circle,6 where 0 < vmax ≤
1
2 is known. Thus, at time n the position of the target is
given by

Wn = w0 + V n mod 1, n = 1, . . . , N.

Note that w0 is the position of the target one sample before the
search begins, which we set up this way for indexing conve-
nience. The noise and search models remain unchanged from
the previous section. A non-adaptive strategy is comprised of
N search regions {Sn}N

n=1 and two estimators ŴN = Ŵn(Y N ),
V̂ = V̂ (Y N ) where Y N is the vector of N observations
resulting from the N queries defined by {Sn}N

n=1. A strategy
is said to have search resolution δ and error probability � if
for any w0,

Pr
(

|ŴN − WN |c ≤ δ and |V̂ − V | ≤ δ
)

≥ 1 − �, (20)

namely, if both the final position of the target and its velocity
can be recovered within resolution δ with error probability
at most ε. We say that a targeting rate R and an associated
targeting reliability E are achievable (non-adaptively), if there
exists a sequence of (non-adaptive) strategies indexed by k
with search time Nk , search resolution δk and error probability
εk such that

lim inf
k→∞

1

Nk
log(1/δk) ≥ R, lim inf

k→∞
1

Nk
log(1/εk) ≥ E .

The associated non-adaptive targeting capacity is the supre-
mum of all achievable targeting rates.

Remark 6: One may question our choice to use the same
search resolution parameter δ for both initial position and
velocity. Indeed, it is more general to consider two different
search resolutions, that can then decay exponentially with two
different exponents, and give rise to a two-dimensional rate
region of initial location targeting rate vs. velocity targeting
rate. It is possible (though more cumbersome) to analyze
this rate region in a way similar to what is done in the
subsections below. However, we choose to restrict our attention
to the simpler one-dimensional setup. This choice is practically
motivated by noting that satisfying (20) immediately implies
that we can reconstruct the entire trajectory of the target with
the same error probability and within resolution (N + 1)δ.

Namely, setting Ŵk
def= ŴN − (N − k)V̂ , (20) implies that

Pr

(

max
n∈{1,...,N} |Ŵn − Wn |c ≤ (N + 1)δ

)

≥ 1 − �. (21)

6Note that while we have no assumptions on the initial location, we do
assume that the velocity of the target is uniformly distributed. The dithering
we used in the previous section can be adopted to this case to allow us to
consider arbitrary velocity if vmax = 1

2 , however, this cannot be readily done
for other values of vmax.

In fact, it is easy to see that the criteria (20) and (21)
are asymptotically equivalent on the exponential scale. Thus,
setting two different targeting rates for initial position and
velocity is redundant if one is interested in reconstructing the
target trajectory, as the resolution of the reconstruction would
be dominated by the smaller rate exponent.

B. Main Result for Unknown Velocity

The main result of this section is the following.
Theorem 3: Let Pq(y|x) be the query observation channel.

Then any targeting rate R satisfying

R <

(

1

2
− vmax

)

· max
q

IXY (q, q), (22)

is achievable with targeting reliability E(R(1−2vmax))
1−2vmax

using
non-adaptive search strategies, where E(R) is the ran-
dom coding error exponent for the channel Pq∗(y|x). Fur-
thermore, the non-adaptive targeting capacity is at most
1
2 maxq IXY (q, q).

Remark 7: It is evident that the direct and converse parts of
this theorem become tight as vmax becomes small. As pointed
out above, vmax will be an extremely small number in any
reasonable search scenario. The converse part is in line with
the intuition that at least twice the measurements are needed
to capture both location and velocity. The gap between the
converse and direct parts stems from the fact that the paths of
targets starting at different initial positions and velocities, can
intersect several times during the sampling period. The most
likely error to make is between two trajectories that intersect
many times. While most trajectories will intersect no more
than once, those with very different velocities can intersect
many times during the N queries. As will be shown below,
the number of times trajectories can intersect is governed
by 2vmax.

Remark 8: Note that even as vmax → 0, we still incur a
factor half in the rate relative to the case of a stationary target.
This discontinuity stems from the order of limits; namely, even
when the target is guaranteed to move at an extremely small
velocity, it can still cover arbitrarily large distances given
sufficient time.

Remark 9: The result above can be easily extended to the
case where the velocity is uniformly distributed over any
interval J ⊂ R with size |J | ≤ 1, since one could simply
“center” this interval around zero by subtracting the mean
velocity. The requirement that |J | ≤ 1 guarantees there is no
aliasing of different eligible velocities.

C. Proof of Achievability

Each pair of initial position and velocity (w0, v) naturally
induces a trajectory:

τ (w0, v)
def= {w0 + vn mod 1}N

n=1,

which is the set of all location where the target lies during the
search process. Setting some desired resolution δ, we partition
the unit interval into M = N/δ equi-sized subintervals {bm} of
size δ/N each. We call these intervals sensors. Then, we can
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now define the quantized trajectory τ̂ (w0, v) associated with
the trajectory τ (w0, v) w.r.t. to this partition, which is the
sequence of all sensors where the target lies during the search
process. This is given by

τ̂ (w0, v)
def= sensor (τ (w0, v)) ,

where sensor(x) returns the identity of the sensor in which
the point x lies, i.e., sensor(x) = m if x ∈ bm .
Clearly, since the target is known to move at a con-
stant bounded velocity, there cannot be too many quantized
trajectories:

Lemma 2: The number of distinct quantized trajectories is
at most (2Nvmax + 3)N2 M2.

Proof: Let T be the set of all trajectories, and let
T (m, m′) ⊂ T be the set of all trajectories τ that start in sensor
m and end in sensor m′, i.e., for which τ̂ = {m, . . . , m′}.
Moreover, let Tc(m, m′) be the set of all the trajectories in
T (m, m′) that start and end at exactly the centers of the
sensors m and m′. Let ̂T , ̂T (m, m′) and ̂Tc(m, m′) be the
corresponding sets of quantized trajectories.

We are clearly interested in upper bounding |̂T |, the car-
dinality of the set of all quantized trajectories. To that end,
we first write

|̂T | =
∑

m,m′
|̂T (m, m′)|

≤ M2 · max
m,m′ |̂T (m, m′)|

≤ M2 · max
m,m′ |̂Tc(m, m′)| · max

m,m′∈[M]
|̂T (m, m′)|
|̂Tc(m, m′)|

≤ (2Nvmax + 3)M2 · max
m,m′

|̂T (m, m′)|
|̂Tc(m, m′)| ,

where summations and maximizations are taken over all
m, m′ ∈ {1, . . . , M}. For the last inequality we observe the
following: The distance covered by a target that starts at
location w and ends up at location w′ is |w′ − w|c + k
for some integer k, hence the velocity of the target must
be v = |w′−w|c

N + k
N . Since |v| ≤ vmax it must hold that

|k| ≤ Nvmax + 1.
To conclude the proof, we now show that |̂T (m, m′)| ≤

N2 · |̂Tc(m, m′)|. Let τ̂ ∈ ̂T (m, m′), and let (w, v) be its initial
position and velocity. It is easy to see that there must exist
τ̂c ∈ ̂Tc(m, m′) with velocity vc such that |v − vc| ≤ 1

2M N .
Thus, both quantized trajectories are always at a distance of
at most 1

M (one sensor) from each other. Moreover, since both
start and finish at the same two sensors, it must be that either
τ̂ = τ̂c, or that τ̂ diverges from the τ̂c at some time instance
and merges back to it at another time instance. For any fixed
τ̂ . the number of such quantized trajectories τ̂ is at most 1 +
2
(N

2

) ≤ N2, where the factor 2 corresponds to the fact that τ̂
can diverge either forward (in case it is faster) or backward
(in case it is slower). �

Now that we control the total number of quantized trajec-
tories, we would like to further show that any two quantized
trajectories cannot intersect (i.e, be inside the same sensor at
the same time) too much, unless their parameters are very
similar. To that end, we say that two (quantized) trajectories

with parameters (w0, v) and (w′
0, v

′) are close if |w0 −w′
0|c ≤

δ and |v − v ′| ≤ δ
N . Otherwise, we say the (quantized)

trajectories are far.
Lemma 3: If two quantized trajectories are far, then they

intersect at most �2Nvmax� times.
Proof: Consider two quantized trajectories with parame-

ters (w0, v) and (w′
0, v

′), and assume they are far from each
other. There are two cases: either |v − v ′| > δ/N , or both
|v − v ′| ≤ δ/N and |w0 − w′

0|c > δ. The second case
means that the trajectories start at least N sensors apart, and
since their absolute relative velocity is at most δ/N (a sensor
per second), they can intersect at most once. Let us now
consider the first case. Since here the absolute relative velocity
is at least one sensor per second, then once the quantized
trajectories intersect, their next intersection can occur only
once the relative distance covered by the trajectories is at least
one full circle. Since the total relative distance covered is at
most 2vmax N , the maximal number of intersections is at most
�2vmax N�. �

Now, we proceed to prove the achievability via random
coding using an input distribution q∗ that achieves the supre-
mum in (1). As in the zero velocity case, we define a binary
matrix, with M rows and N columns and draw its elements
Bi, j i.i.d with Pr(Bi, j = 1) = q∗. Each row represents a
specific sensor on the unit circle, where the first and last
rows represent two adjacent sensors. In contrast to the zero
velocity case, not only the rows are defined as codewords but
also any path from left to right along this matrix is a possible
codeword. In fact, each quantized trajectory τ̂ (w0, v) naturally
defines a diagonal line within the matrix that starts at the
sensor containing w0 and whose “slope” is determined by v.
We can think of the bits visited along the way as a codeword.
Collecting all those codewords generates a codebook {xk}˜Mk=1,
where ˜M ≤ 2N2 M2 by Lemma 2. Unlike the standard
analysis of random coding, since trajectories overlap, their
associated codewords are not independent across the overlaps,
which complicates the analysis. On the bright side however,
note that for a given correct codeword (corresponding to the
true quantized target trajectory), the decoder can choose any
one of the codewords that correspond to any of trajectory
that is close to the correct one (where closeness is as defined
above), and that will be considered a correct decoding. More
specifically, for the correct codeword xk , let Tk be the set of
all codewords that correspond to trajectories that are far from
xk . The decoder will err if and only if it decides in favor of
some codeword from Tk .

To keep things simple, we employ a maximum-likelihood
decision rule that selects the codeword x that maximizes
P(y|x) (with ties broken arbitrarily). Thus, a decoding
error will occur only if ∃xk′ ∈ Tk such that P(y|xk′ ) ≥
P(y|xk), where xk is the correct codeword/trajectory. Note
that due to the dependencies between the codewords, and
since making an error that is not far from the truth is con-
sidered okay, this decoding rule is not necessarily the optimal
one.

As before, we apply Lemma 1 and the event A to allow
us to analyze the decoder for the channel Pq∗(y|x). Follow-
ing the same steps that led us to (5), we need to analyze
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Pr(e|xk, y,A). We have

Pr(e|xk, y,A) ≤
⎛

⎝

∑

k′∈Tk

Pr(Ek′ |A)

⎞

⎠

ρ

,

where Ek′ is the event of erroneously declaring x′
k when xk is

the correct trajectory and

Pr(Ek′ |A) =
∑

xk′ ∈Tk :Pq∗ ( y|xk)≤PA( y|xk′ )
Pr(xk′ |xk,A). (23)

Repeating the steps that led to (10) we obtain

Pr(xk′ |xk,A) = Pr(xk′ , xk |A)

Pr(xk |A)

≤ P(xk, xk′ )

Q(xk)(1 − Pr(Ac)/QN
min )2

. (24)

However, now xk and xk′ are independent only in the parts
where they do not intersect. Using Lemma 1 and Taylor’s
expansion, there exist an αN such that 1

(1−Pr(Ac)/Q N
min)2 = 1 −

αN with αN vanishing double exponentially in N . Substituting
this into (23) and using Gallager’s [26] method we arrive at:

Pr(Ek′ |A) ≤ (1 − αN )
∑

xk′ ∈Tk

P(xk, xk′)

Q(xk)

(

Pq∗(y|xk′)

Pq∗(y|xk)

) 1
1+ρ

.

(25)

Now, using Lemma 3, we know that all xk′ ∈ Tk intersect
with xk at no more than 2Nvmax indices. Let Tk(d) denote the
subset of trajectories in Tk that contains all trajectories with
exactly d intersections with xk , hence Tk = ∑2Nvmax

d=0 Tk(d).
Using this, we rewrite (25) as

Pr(Ek′ |A)≤ (1−αN )

2Nvmax
∑

d=0

∑

xk′∈Tk (d)

P(xk, xk′ )

Q(xk)

(

Pq∗(y|xk′ )

Pq∗(y|xk)

) 1
1+ρ

.

(26)

For a given d , let the set of indices where xk and xk′ do
not intersect be denoted by Id . We know that there are
exactly N − d indices in this set. We have that7 P(xk, xk′ ) ≤
Q(xk)

∏

i∈Id
Q(xk′,i ). In addition, using the memorylessness

of the channel and since Pq∗(yi |xk,i ) = Pq∗(yi |xk′,i ) on all
indices where the trajectories corresponding to the codewords
intersect, we have

Pr(Ek′ |A) ≤ (1 − αN )

×
2Nvmax
∑

d=0

∑

xk′ ∈Tk(d)

∏

i∈Id

Q(xk′,i )

(

Pq∗(yi |xk′,i )

Pq∗(yi |xk,i )

) 1
1+ρ

. (27)

7this is an inequality since the left-hand-side can be zero if the codewords
do not agree on the coordinates where they overlap.

After substituting the above equation in (5) we get

Pr(e|A)

≤ ˜Mρ(1 − αN )

∫

y
d y
∑

xk

Pr(xk |A)Pq∗(y|xk) ×
⎡

⎣

2Nvmax
∑

d=0

∑

xk′ :k′∈Tk(d)

∏

i∈Id

Q(xk′,i )

(

Pq∗(yi |xk′,i )

Pq∗(yi |xk,i )

) 1
1+ρ

⎤

⎦

ρ

= ˜MργN

∫

y
d y
∑

xk

Q(xk)Pq∗(y|xk) ×
⎡

⎣

2Nvmax
∑

d=0

∑

xk′ :k′∈Tk(d)

∏

i∈Id

Q(xk′,i )

(

Pq∗(yi |xk′,i )

Pq∗(yi |xk,i )

) 1
1+ρ

⎤

⎦

ρ

≤ ˜MργN

∫

y
d y
∑

xk

Q(xk)Pq∗(y|xk) ×

2Nvmax
∑

d=0

⎡

⎣

∑

xk′ :k′∈Tk(d)

∏

i∈Id

Q(xk′,i )

(

Pq∗(yi |xk′,i )

Pq∗(yi |xk,i )

) 1
1+ρ

⎤

⎦

ρ

(28)

= ˜MργN

2Nvmax
∑

d=0

∫

y
d y
∑

xk

Pr(xk)Pq∗(y|xk) ×
⎡

⎣

∑

xk′ ∈Tk(d)

∏

i∈Id

Q(xk′,i )

(

Pq∗(yi |xk′,i )

Pq∗(yi |xk,i )

) 1
1+ρ

⎤

⎦

ρ

= ˜MργN

2Nvmax
∑

d=0

∫

y
d y
∑

xk

Pr(xk)Pq∗(y|xk) ×
⎡

⎣

∑

xk′ ∈Tk(d)

N−d
∏

i=1

Q(x)
∏

i∈Id

(

Pq∗(yi |x)

Pq∗(yi |xk,i )

) 1
1+ρ

⎤

⎦

ρ

, (29)

where γN
	= 1 − αN converges to unity double exponentially

fast and where (28) holds since
[∑

i ai
]ρ ≤ ∑i aρ

i for any
0 ≤ ρ ≤ 1 and ai ≥ 0. Note that for any d and any choice
of x, while the bracketed term in (29) contains summation over
vectors of length N , the product terms are over only N − d
coordinates, hence effectively we can think of the vectors as
being of length N −d . Since we iterate through all possible 2N

binary vectors and integrate over all possible output sequences,
after some standard Gallager-type manipulations we have that

Pr(e|A) ≤ ˜Mρ
2Nvmax
∑

d=0

γN

N−d
∏

i=1

∫

y
dy

[

∑

x

Q(x)P
1

1+ρ

q∗ (y|x)

]1+ρ

=
2Nvmax
∑

d=0

2−(N−d)(E0(ρ)−ρ log(˜M)/(n−d))+logγN . (30)

Since the number of elements in the sum grows linearly
with N , the dominating element will be the one with the largest
exponent, which is given by

2−N(1−2vmax))(E0(ρ)−ρ log(˜M)/n(1−2vmax ))+logγN , (31)

concluding the proof.
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D. Proof of Converse

The converse follows the same lines as the converse for
stationary targets, only now there are two unknowns: initial
position and velocity. Denote the fixed stopping time by
τ = N . Let {Sn}N

n=1 be any non-adaptive strategy achieving
an error probability ε with search resolution δ. Partition the
unit interval into �β/δ� equi-sized intervals for some constant
β ∈ (0, 1

2 ), and let W ′
N be the index of the interval contain-

ing WN . Similarly, partition [−vmax, vmax] into �2vmaxβ/δ�
equi-sized intervals and let V ′ be the index of the interval
containing V . It is easy to see that the scheme {Sn} can
be tweaked to output W ′

N , V ′ with error probability at most

ε′ def= ε + 4β(1 − β), where the latter addend stems from the
probability that (̂WN , ̂V ) is too close to a boundary point.

Note that Xn ∼ Bern(qn) where qn
def= |Sn|, and that

Yn is obtained from Xn through a memoryless time-varying
channel Pqn (y|x). As before we also allow the scheme to use
randomness encapsulated in a r.v. U of an arbitrary cardinality
that is independent of (W, V ). Following the steps of the
converse to the channel coding theorem, we have

2 log

(

β

δ

)

+ log(2vmax)

= H (W ′
N , V ′|U)

= I (W ′
N , V ′; Y N |U) + H (W ′

N , V ′|Y N , U)

(a)≤ I (W ′
N , V ′; Y N |U) + 2�′ log(β/δ) + 1

=
N
∑

n=1

I (W ′
N , V ′; Yn|Y n−1, U) + 2�′ log(β/δ) + 1

(b)≤
N
∑

n=1

I (W ′
N , V ′, Y n−1, U ; Yn) + 2�′ log(β/δ) + 1

(c)=
N
∑

n=1

I (W ′
N , V ′, Xn, Y n−1, U ; Yn) + 2�′ log(β/δ) + 1

(d)=
N
∑

n=1

I (Xn; Yn) + 2�′ log(β/δ) + 1

(e)=
N
∑

n=1

IXY (qn, qn) + 2�′ log(β/δ) + 1

≤ N · sup
q∈(0, 1

2 )

IXY (q, q) + 2�′ log(β/δ) + 1, (32)

where (a) is by virtue of Fano’s inequality, (b) holds
since conditioning reduces entropy, (c) follows since Xn is
a deterministic function of (W ′

N , V ′, U), (d) follows since the
search scheme does not depend on Y n−1 and the channel from
Xn to Yn , given the scheme, is memoryless. Finally, (e) follows
from the definition of IXY (p; q) and noticing that the size of
the search region governs the input distribution. Rearranging
terms, dividing by 2N(1 − ε′) and recalling that R = log(1/δ)

N ,
we obtain

R ≤ 1

2(1−2ε′)

⎛

⎝ sup
q∈(0, 1

2 )

IXY (q, q)+ 2−log(2vmax)

N

⎞

⎠− log β

N
.

Recalling that ε′ = ε + 4β(1 − β), and noting that the
inequality above holds for any β ∈ (0, 1

2 ) and ε small enough,
the converse now follows by taking the limit N → ∞, and
then taking β, ε → 0.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we considered the problem of acquiring a
target moving with known/unknown velocity on a circle, start-
ing from an unknown position, under the physically motivated
observation model where the noise intensity increases with the
size of the queried region. For a known velocity, we showed
that unlike the constant noise model, there can be a large
gap in performance (both in targeting capacity and reliability)
between adaptive and non-adaptive search strategies. Further-
more, we demonstrated that the cost of accommodating an
unknown velocity in the non-adaptive setting, incurs a penalty
factor of at least two in the non-adaptive targeting capacity.

One may also consider other search performance criteria,
e.g., where the agent is cumulatively penalized by the size of
either the queried region or its complement, according to the
one containing the target. The rate-optimal scheme presented
herein, which is based on a two-phase random search, may
be far from optimal in this setup. In such cases we expect
that sequential search strategies, e..g, ones based on posterior
matching [8], [32], would exhibit superior performance as
they naturally shrink the queried region with time. Other
research directions include more complex stochastic motion
models, as well as searching for multiple targets (a “multi-
user” setting). For the latter, preliminary results indicate that
the gain reaped by using adaptive strategies vs. non-adaptive
ones diminishes as the number of targets increases [24].
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